${ }^{\Sigma}$ Tyco Electronics
 Crompton Instruments Dintegra 1260
 Operation, Set up and specification
 E-Mail: electrical@tycooelectronics.com
 Important safety information is contained in this Installation guide and separate Set up and Operation Guide. Users attempting installation or other procedures.

1 Features and Options
The multifunction Dintegra 1260 provides monitoring of threephase voltage, current, frequency, Watts, VAr, VA, energy kWh,

parameters can be viewed though the screens on the 5 -position, 3-digit LED display.
Register values are saved in non volatile memory and preserved values are maintained during loss of auxiliary power

1.1 Digital Inputs

Dintegra has 2 digital inputs. Digital inputs are used to monitor the status of electrical contacts via Modbus ${ }^{\text {"w }}$ (e.g. Circuit breakers auxiliary contacts or similar). They can also be used to contro which of the two energy registers internal to the Dintegra will
accumulate $k W h$, according to the state of the inputs accumulate kWh , according to the state of the inputs. external rate switching signal is available.
1.2 Energy Pulsed Outputs

Dintegra has 2 Pulsed Outputs: "Pul1" and "Pul2". The function and pulse rate of these outputs may be set at installation
1.3 Min - Max and Demand Values

Maximum Demand (maximum integrated load over a user specified period) is available for A, W, VAr, VA, $\Sigma W, \Sigma V A$ and
$\Sigma V A r$. If a new value of demand calculated is greater than that stored, the new, higher value replaces the existing. Demand integration time may be set between 1 and 60 minutes.

Maximum and Minimum values are recorded for V L-N; V L-L; A; W ; VAr; VA; $\Sigma \mathrm{W}$,; $\Sigma \mathrm{var}$ and $\Sigma \mathrm{VA}$. In each case, if the measured Instantaneous value is less than previous recorded min instantaneous value is more than previous recorded max value, then a new maximum value is recorded.

$$
1.4 \text { Monitoring THD Values }
$$

All voltage and current measurements are true RMS incorporating up to $19^{\text {In }}$ of odd harmonics for accurate measurement of non
sinusoidal waveforms. Both voltage and current THD is monitored via the front display.

1.5 Calculation Methods for Active / Reactive Power

Export (negative) energy displays are indicated when the left decimal point LED flashes within the ΣW display There are two methods for calculating total active and total reactive powers:

1) Active / Reactive power can be calculated by summing import 2) Active / Reactive power can be calculated according direction as import / export.

2 Display operation

When showing cumulative energy values (kWh , kVArh etc), the op left block of digits indicate the register being viewed. All 12 remaining digits of the display may be read as one 12 digit

When showing instantaneous parameters (V , A W etc), the top he shows per phase parameters, while bottom left shows W , VA or Hz and bottom right shows VAr or Power Factor $(\operatorname{Cos} \varphi)$

Display operation during set up mode is described in section 3. 2.1 Function Keys

Function keys have 3 modes of operation, depending whether he display is showing energy values, per phase values, or in Mode using the () or () buttons. Enter set up mode using (》) "Set") button.

While displaying measured values

Key(s)	Per phase Mode	Energy Mode
$(\uparrow) \text { or }$ (\downarrow)	Select $\mathrm{V}_{\mathrm{LN}}, \mathrm{V}_{\mathrm{LL}}, \mathrm{A}, \mathrm{W}$, VAr, VA, PF or THD or Energy Mode	Select kWh or kVArh or Per Phase Mode
(») Set	Select min, max, demand and instant values, as available. Hold to enter set up mode.	No effect, unless held down, when it is used to enter set up mode
(«) Back	Select W, VA or Hz	No effect
(-) Esc	Select VAr or $\operatorname{Cos} \varphi$	No effect

While in set up mode

Key(s)	Action
(\uparrow) or	
(\downarrow)	Increase or decrease digit value or view a multiple choice option
$(>)$ Set	Allows entry to Set Up mode and selection of options and choices
$(<)$	Return to previous screen
Back	
(\neg) Esc	Used to exit Set Up mode and initiate Save routine

(๑) Esc \quad Used to exit Set Up mode and initiate Save routine

Sutto	Top Left Line	Top Middle Line	Top Right Line	Botom Left Line	Bottom
\uparrow	THD V 1. VVolts	THD V2..nVolts	THD V 3. VVolts		
\&	THDII Curent	THD $\mathrm{I}_{2} \mathrm{Current}$	THD ${ }_{3} \mathrm{Curant}$		
	$\mathrm{V}_{1 \text { L. Wolts }}$	$\mathrm{V}_{2 \text { L. }}$ Volts	$\mathrm{V}_{3.2 . \mathrm{V} \text { Volts }}$		EVAR
	$\mathrm{v}_{\text {LIL }}$ Volts	$\mathrm{V}_{2 \mathrm{LLI}}$ Volts	V ${ }_{\text {LIL }}$ Volts		Poue
	1, Cur	${ }_{12}$ Current	${ }_{3}$ Current		
	w, Watts	W_{2} Wats	w_{3} Wats		
	$\begin{array}{\|l} \text { var }_{1} \text { Reactive } \\ \text { Power } \end{array}$	$\begin{aligned} & \operatorname{var}_{2} \text { Reactive } \\ & \text { Power } \end{aligned}$	$\begin{aligned} & \text { var }_{3} \text { Reactive } \\ & \text { Power } \end{aligned}$	Hz Froenemy	b, () butor
	PF_{1} Power Factor	PF_{2} Power Factor	PF_{3} Power Factor		

witches to Energy Mode (see below)

2.3 Viewing Max/Min and Max Demand The » button is used to select maximum, minimum or maximum demand (MD) displays. When max, min or MD values are displayed, the H, L or M annunciators respectively show the stored value.
Min and Max values are recorded for VLN, VLL, A, W, VAr, VA , $\Sigma \mathrm{W}, ~ \Sigma \mathrm{VA}, ~ \Sigma \mathrm{VA}$. Demand values are recorded for A, W, VAr, VA, ΣW, Σ VA, Σ VAr. H, L and M annunciators for any other parameters have no meaning.

3 Setting up \quad LrB: $F_{\square}: \square$:

Set up mode is entered by holding down the SET button for 3 seconds. Dintegra will automatically leave programming mode no buttons are pressed for 20 seconds or by pressing the ESC key. Optionally, a set up password (PN can be set by the user
to prevent unauthorised access to set up screens. If set, the correct password/PIN must be selected before access to set up mode is permitted
After entering the set up mode, the set up initial screen is shown Pressing SET a second time selects basic set up screens. Pressing the up or down arrows immediately after entry to set up
3.1 Basic set up

One of three screens may be selected with the $\downarrow \uparrow$ keys

CT ratio	LrA): F_{0} : [ELr]:
VT ratio	LrR: F_{0} : Utr $^{\text {L }}$
Reactive Energy calculation method	LrA: $F_{0}:$ ERD:

$\begin{array}{l}\text { Reactive Energy } \\ \text { calculation method }\end{array}$	$\angle-Q: F_{0}:$ ERL:

> 3.2 Advanced Set Up

One of six set up screens may be selected with $\downarrow \uparrow$ keys:

Demand Integration Time	dE: L_{1} : \square
Pulsed Outputs	PLit:SE:
Energy Register (counter) set up	En9: [nc: \square;
Reset stored values	- ES : Et :
Communications Parameters	-5-:485:
Set Up password	P, n:

Set Up password
3.3 Set Up Menu

The diagram below shows the menu structure to access all use settable parameters

3.4 Number Entry

The same basic number entry procedure is used in most set up

trA: $F_{0}:[E r$:
ress SET button. The first digit blinks. By using UP-DOWN buttons, select the value required for the first digit. ress SET button. The second digit blinks. By using UP-DOWN buttons, select the value required for the second digit.
Press SET button. The third digit blinks. By using UP-DOWN
button select the value required for the third digit
uttons, select the value required for the last digit
Press SET button. The parameter name is displayed e.g
LrA: $F_{0}:[E L$:
hen required changes have been made, they must be saved before leaving set up mater
press the ESC button.
LrA: $F_{0}: \square:$
shown. Press the Esc button again. When "SAVE Set yES" is displayed, press SET to save the changes or ESC to abandon the
required, other values may be modified sequentially, for example by selecting the VT ratio next. Saving as above can be
executed when all changes have been made, and then all the revised values will be saved in one step
$3.5 \quad$ Multiple choice selection
Procedure is similar to that used for number entry, except that the $\downarrow \uparrow$ arrow keys are used to step through the available options. The SET(>>) key selects the currently shown option. As above, the changes must be saved before leaving the set up mode if they are to become active.
3.6 Current Transformer Ratio

LrR: $F_{0}: E L r$: The current transformer ratio can be set primary to secondary ratio. For example, if a current transformer which has a ratio of 200/5A is connected set the current transformer ratio to $40 \quad(40=200 / 5)$.
Factory default for CT ratio is 1
$3.7 \quad$ Voltage Transformer Ratio Setup
$\boxed{L r A}: \sqrt[F]{F}:$ ULr: $: \begin{aligned} & \text { If the system does not include voltage } \\ & \text { transformers, as is the case with many }\end{aligned}$ low voltage installations, then enter a VT ratio of 1 . The VT ratio may be set between 0.1 and 4000.0 . For example if a voltage system and Dintegra; Voltage transformer ratio is entered as 330 . system and
$(330=3300 / 100)$ Factory default for VT ratio is 1.0 (unity)

3.8 Reactive Energy Calculation Method

LrB: $F_{0}: \angle R L:$
Different methods can be specified for reactive energy calculation in Dintegra. Factory default method is recommended for most applications. If the Dintegra kVAr reading does not give good agreement with other instruments,
then a different setting may be appropriate for special circumstances. Request technical support if kWh is accurate but kVAr is not. CAL Method

CAL	Method
0	Quadrature multiplication of V and I samples per phase, summing +(Inductive) and -(capacitive) to give a single net figure
1	Quadrature multiplication of V and I samples, summing +(Inductive) and -(capacitive) to give a total inductive and total capacitive figure
2	Summation of voltage and current harmonics allowing for phase angle of each harmonic summing +(Inductive) and -(capacitive) to give a single net figure.
3	Summation of voltage and current harmonics allowing for phase angle of each harmonic summing +(Inductive) and -(capacitive) to give a total inductive and total capacitive figure
4	Reactive power computed from active and apparent power, summing +(Inductive) and -(capacitive) to give a single net figure.
5	Reactive power computed from active and apparent power summing +(Inductive) and -(capacitive) to give a total inductive and total capacitive figure

3.9 Demand Time Setup

GE: $L_{1}: \square$ The demand integration time can be set between 1 and 60 minutes using 3.10 Reset of minimum, maximum and energy values:

Stored values including max/min, energy set.

Choose the appropriate option required as described abbreviation meanings are shown in the table below.

Abbreviation	Reset Action
HL	Reset max/min values (High, Low)
E-1	Reset Energy counter registers 1
E-2	Reset Energy counter registers 2
dE	Reset maximum demand

Pu: $5 E: \square$ Aswh

be saved, or there will be no change to registers.
3.11 Pulse Menu (PULSE)

This option allows three parameters to be set: The pulse rate (for both outputs), source for pulse output 1 and source for pulse output 2 , respectively " $r A t$ ", " $0-1$ " and " $0-2$

Pulse ratio (rAt) can be chosen from I pulse per 1, 10 or 100 Wh/VArh/VA; 1,10 or $100 \mathrm{kWh} / \mathrm{kVArh} / \mathrm{KVA}$ or 1 MWh/MVArh MVA. Factory Default is 1 .

Output 1 source ($0-1$) and Output 2 ($0-2$) source can be chosen from:

Display	Source
ACt	Counter register set 1 Active power Export or Import
AI	Col

Capacitive
Counter regi
r-L \quad Counter register set 1 Reactive power Inductive only r-C Counter register set 1 Reactive power Capacitive only Defaults are: Output 1: A-I, Output 2: r-L

Note that the outputs only pulse when Counter register set 1 $\frac{\text { is active. When Counter }}{\text { relays will not operate. }}$
3.12 Energy Counter Register (Eng Cnt) Menu

En9: $\cap \cap$ DIN-TEGRA has 2 energy register sets: Energy register set 2 (E2). Select either E1 or E2 using the arrows, then press to enable selection of the option required. As default, both register sets are active
E-1" has 4 options:

| On | E1 active always |
| :--- | :--- | :--- |
| $1-1$ | Activate E1, active when digital input 1 is on (energised) |

I-2 Activate E1, when digital input 2 is on (energised)
E-2 $\quad \mathrm{E} 1$ inactive when E 2 is active.
-2 also has 4 options.

On	E2 active alwa

| $1-1$ | Activate E 2, active when digital input 1 is on (energised) |
| :--- | :--- | :--- |
| $1-2$ | Activate E 2, | I-2 \quad Activate E2, when digital input 2 is on (energised)

If $\mathrm{E}-1$ is set to " E -2 and E 2 is set to " $\mathrm{E}-1$ " energy is cumulated to
3.13 User password Setup (PIN)
$P, \pi: \square$ This set up screen allows the user to define and can be used for preventing device settings from being changed can be used for preventing device settings from being changed There are 2 sub menus available to change the password ($\mathbf{C H g}$), and to activate or deactivate it(ACt)
3.14 Changing the PIN

This is used to change the user PIN.
Before changing the Pin, the old Pin must be entered, to ensure the pin change is authorised. The Factory default value for user
password is "1234", inactive. After entering the old pin, the new Pin may be entered.
3.15 Activating the PIN

Activation is a separate process from setting the PIN During activation, the PIN must be entered before the user is allowed to change the setting.
As before, the changes must be saved before leaving the set up mode if they are to become active
3.16 Serial Communication (rS-485)
r5-::489 Dintegra provides Modbus ${ }^{\text {TM }}$ RTU communication r5-1:485 via an optically isolated RS485 port. All

Modbus $^{\text {TM }}$ port.	
3.16.1	Modbus ${ }^{\text {TM }}$ Parameter Settings

3.16.1Modbus $^{\text {TM }}$ Parameter Settings
Parameters which may be set for the RS485 port are shown in the table below.
Abbreviation

4 Specification
$4.1 \quad$ Inputs

| Nominal voltage range: | 10 to 300 V L-N, 10 to 500 V L-L |
| :--- | :--- | Max voltage burden: $\quad<0.5 \mathrm{VA}$ per phase | Nominal current range: | $0.05-5.5 \mathrm{~A}$ |
| :--- | :--- |
| Max current burden: | <1 VA per phase | System CT primary $\quad 1 \ldots 2000$ (i.e. $10,000 \mathrm{~A}$ max) System VT ratios $\quad 0.1 \ldots 4000,400 \mathrm{kV}$ max

4.2 Auxiliary	
Auxiliary supply voltage range	190-260V AC 50/60Hz
Auxiliary supply burden	< 4VA
4.38	Measuring Ranges
Voltage:	10-110\% of nominal
Current:	$10-110 \%$ of nominal
Frequency:	$45-65 \mathrm{~Hz}$
Power factor:	functional 4 quadrant, 0-1 lag/lead
THD:	Up to 19th (odd harmonics only)
Energy:	11 digit resolution
Demand Time	1-60 min (programmable)

4.4 Accuracy		
Voltage	1% of nominal upper ± 1 digit	
Curent	1%	

Voltage	1% of nominal upper ± 1 digit
Current	1% of nominal upper ± 1 digit
Frequency	1% of mid range ± 1 digit
Power factor	1% of Unity (0.01)
Active power (W)	1% of nominal upper ± 1 digit
Reactive power (VAr)	2% of nominal upper ± 1 digit
Apparent power (VA)	1% of nominal upper ± 1 digit
Active energy (Wh)	1% of nominal upper ± 1 digit
Reactive energy (VArh)	2% of nominal upper ± 1 digit
Total Harmonic Distortion	2%, up to 19th harmonic (odd only)

4.5 Outputs

RS485 communications:	Modbus
Baud rates:	$2400,4800,9600,19200,38400$
Pulsed outputs:	2 max
Pulse duration:	80 msec
Contact rating	50 mA max at 30V DC max
Contact form:	Opto Isolated, Open Collector (NPN Transistor)

. 6 Digital Inputs

Input Pulse Width	50 milliseconds min

Operation Voltage	$12-48 \mathrm{~V}$ DC
$4.7 \quad$ Enclosure and Environmental	

Enclosure style:	DIN 43880, 106 mm rail length
Material:	UL94-V0 Flame retardant
Terminals:	Shrouded screw-clamp 0.05 mm to 4mm wire
Dielectric voltage:	Withstand test 3.25 kV rms 50 Hz for 1 minute between all electrical circuits
Operating temperature:	-5 to $+50^{\circ} \mathrm{C}$
Storage temperature:	-20 to $+70^{\circ} \mathrm{C}$
Relative humidity:	95%
Weight	0.45 kg
Shock:	static shock: 30 Newton dynamic shock : 5 Joule
Vibration:	$5-50 \mathrm{~Hz} \mathrm{(10} \mathrm{min)}$.
IP protection:	IP40 Front Panel Dimensions: deep dep wide $\times 90 \mathrm{~mm}$ high $\times 58 \mathrm{~mm}$ 4.17 " wide $\times 3.54$ " high $\times 2.28$ " deep Standards ComplianceIE61010 Cat III, 300V IEC61326 Emissions and Immunity See Section 5.2

${ }^{\equiv}$ Tyco Electronics

Dintegra 1260

Installation and Modbus"' guide

-Mail: crompton.info@tycoelectronics.com

During normal operation, voltages hazardous to life may be present at some of the terminals of this unit.
Installation and servicing should be performed only by qualified, properly trained personnel abiding by local regulations. Ensure all supplies are de-energised before Terming should not be user accessible a Tend exal installion and external instalation provicions must be sufficient to prevent hazards under fault conditions.
providing the sole means of fault protection providing the sole means of faut protection - good protected by at least two independent and diverse means. Never open circuit the secondary winding of an energised current transformer.
Auxiliary circuit (communications, Pulsed Output and Digital Inputs) are separated from metering inputs and the 190-260V AC auxiliary circuit by at least basic insulation. Such auxiliary circuit terminals are only suitable for connection to equipment which has no user accessible live parts. The insulation for such auxiliary circuits must be rated for the highest voltage connected to the instrument the remote end of such auxiliary circuits should not be the ressibe in normal use equipment connected to auxiliary circuits may vary wide The choice of connected equipment or combination of equipment should not diminish the level of user protection specified.

5 Installation and Maintenance

5.1 Location and mounting

Units should be installed in a dry position, where the ambient temperature is reasonably stable and will not be outside the range -5 to $+50^{\circ} \mathrm{C}$. Vibration should be kept to a minimum. Preferably, mount the Dintegra so that the display contrast is not reduced by direct sunlight or other high intensity lighting. The Dintegra may be mounted on a standard DIN Rail. The contamination. These units are intended for indoor use only at an altitude of less than 2000 m .

This unit has been designed to provide protection against EM (electro-magnetic) interference in line with requirements of EU and other regulations. Precautions necessary to provide proper dependent and so the following can only be general guidance: - Avoid routing wiring to this unit alongside cables and
products that are, or could be, a source of interference.
excessive interfere to the unit should not a supply line filter may be required.

- To protect the product against incorrect operation or permanent damage, surge transients must be controlled. It is good EMC practice to suppress differential surges to 2 kV or less at the source. The unit has been designed to automatically recover from typical transients, however in
extreme circumstances it may be necessary to temporarily disconnect the auxiliary supply for a period of greater than 10 seconds to restore correct operation.
- Screened communication and small signal leads are recommended and may be required. These and other connecting leads may require the fitting of $R F$ suppression
components, such as ferrite absorbers, line filters etc. if $R F$ components, such as fe
fields cause problems.
- It is good practice to install sensitive electronic instruments that are performing critical functions in EMC enclosures that protect against electrical interference causing a disturbance in function.
- Incident EM radiation may cause accuracy to deviate from the specified accuracy while the EM radiation is present.

6 Input wiring and fusing

Input connections are made to screw clamp terminals. Choice of cable should meet local regulations for the operating voltage and current. Terminals for both current and voltage inputs will accept 5.3.2 it says 2.5 mm cable. This unit must be fitted with external fuses in voltage and auxiliary supply lines. Voltage input lines must be fused with a quick blow AC fuse 1A maximum. Auxiliary supply lines must be fused with a slow blow fuse rated 1A maximum. Choose fuses of a type and with a breaking capacity appropriate to the supply and in accordance with local regulations
Where fitte
with local regulatiocondary's must be grounded in accordance shorting links to be made across CTs. This permits easy replacement of a unit should this ever be necessary.
A switch or circuit breaker allowing isolation of supplies to the unit must be provided.
inal screws should be tightened to 0.5 Nm or 4.5 Ibf-in only.

$$
6.1 \quad \text { Wire type }
$$

Voltage and current measuring terminal blocks are suitable for use with copper wire only.

6.2 Wire size

Voltage and current measuring terminal blocks will accept one 11 AWG] Main terminal less cross sectional area cables 30 -
 6.3

Instruments are intended for Din rail mounting. Terminals must be enclosed within the panel. Ensure wiring to terminals complies with regulations in the installation location.

The auxiliary supply is marked on the side label. The Dintegra should ideally be powered from a dedicated supply, but may be powered from
specified limits
$6.5 \quad 6.2 \quad$ Output Connections
Output connections are made directly to a screw clamp style connector. Terminals will accept one stranded $0.05-2.5 \mathrm{~mm}$ cable or one $0.05-4 \mathrm{~mm}^{2}$ cable.
$6.6 \quad 6.3 \quad$ Modbus $^{\text {TM }}$ RTU RS485
The recommended cable between the RS485 master is two core screened cable. Preferably select a cable specifically
recommended for RS485 use (for example Belden 9860, 8761) although for shorter distances of a few metres most two core screened cables will usually be satisfactory.
Connect units to the RS485 line as shown.
Connect units to the RS485 line as shown. Stubs or star Ensure the line is terminated at each end of the wire as shown.

$\begin{array}{lll}6.7 & 6.4 & \text { Pulsed Output }\end{array}$
Pulse outputs are internally connected to NPN transistors of electrical rating 5 to $24 \mathrm{~V} \mathrm{DC}, 50 \mathrm{~mA}$, maximum.
8. Dimensions

All dimensions shown in mm

3-PHASE 3 WIRE 2 CT CONFIGURATION

3-PHASE 3 WIRE, 3 CT CONFIGURATION

3-PHASE 4 WIRE

TE logo and Tyco Electronics are trademarks. CROMPTON is a
rademark of Crompton Parkinson Ltd. and is used by Tyco Electronics

Modbus ${ }^{\text {"W }}$ RTU Protocol

General information on the Modbus ${ }^{\text {TM }}$ protocol is shown in the Integra 1630 Communications Guide, available from the website ne.crampton-instruments.com
tegra 1260 is shown in this
The Dintegra Address may be set in the range 1-247

\section*{Available Modbus ${ }^{\text {TM }}$ Functions
 | 03H | Read Input Registers |
| :--- | :--- |
| 06 H | Write single register |
| 10 H | Write multiple register |
 Number reoresentation}

 except energy registers which are returned as long integers IEEE floating point format held in 2 consecutive Modbus ${ }^{\text {TM }}$ registers)
Values returned via the Modbus ${ }^{\text {TM }}$ are the actual values present at the Dintegra input, without regard for the VT and CT ratio that has been set. Scaling is as in the table below. Taking Amps for example, values returned will be in the range of 0 to 6 amps, with 1 binary digit representing 0.001 A . If the CT ratio has been set to 2500 in register 6 . To convert to physical current, divide by 1000 and multiply by the CT ratio in register 32770 . Power values must be multiplied by VT and CT ratio (e.g. $\mathrm{CT}=20, \mathrm{VT}=10$, multiply power readings by 200 to get $\mathrm{kW} / \mathrm{kVAr/KVA}$. Power Factor ($\operatorname{Cos} \varphi$) and frequency reading do not need to be scaled.

$$
7.2 \text { Digital Inputs }
$$

Digital Inputs may be read in Modbus" word $82(52 \mathrm{H})$
 High Byte
: Undefined
If $12-48 \mathrm{~V}$ DC is applied to $\operatorname{IN} 1$ (Input 1), the $15^{\text {h }}$ bit reads 1 . If the corresponding input is not energised, then this bit reads as zero. Similarly, if $12-48 \mathrm{~V}$ DC is applied to IN2 (Input 2), the $14^{\text {th }}$ bit of DIN (DIN2) register reads 1
$7.3 \quad$ Modbus $^{\text {TM }}$ Holding Register

ADDR.	$\begin{array}{\|l\|l\|} \hline \text { ADD } \\ (H) \end{array}$	RW	RANGE	$\begin{array}{r} 1 \text { bit } \\ = \end{array}$	Type	Description
32768	8000	RW	4000.0	0.1	short int	Vottage Transformer Ratio
32769	8001	RW	2000	1	short int	Current Transformer Ratio
32770	8002	RW	0-1		short int	Calculation Method
3277	8003	RW	1-60	$\overline{\min .}$	short int	Demand Integration Time
72	04	RW	0.6		short int	Pulse Ratio
32773	8005	RW	0-5		short int	Pulse Output 1 Parameter Setting
32774	8006	RW	0.5		short int	Pulse Output 2 Parameter Setting
32775	8007	RW	0-3		short int	Energy Counter 1 Selection
776	8008	Rw	0.3		short int	Energy Counter 2 Selection
32777	8009	RW	0-247		short int	Communication Address
32778	800A	W	1-5		short int	Baud Rate
	0B	W	0-2		short int	Parity
32780	800C	W	0-1		short int	Password Ena
32781	8000	RW	0-9999		short int	Password

7.4

7.5 Modbus $^{\text {TM }}$ Register Map

102	0066	RW	0:4x10e9 Wh	wh	LGI	Import Active Energy:Reg 2
104	0068					
106	006A	Rw	0:4×1099 Wh	Wh	LG	Export Active Energy:Reg 2
110	006E	RW	0:4x10e9h	Varh	LGI	Inductive Reactive Energy:Reg 2
112	0070					
114	0072	Rw	0:4410e9h	1 VArh	LGI	Capacitive Reactive Energy:Reg 2
116	0074					
118	0076	RW	(0:3000) XUT	0.1 Volt	Usi	L1 Min. Voltage
120	0078	Rw	(0:3000) XUT	0.1 Volt	usi	L2 Min. Voltage
122	007A	RW	(0:3000) XVT	0.1 Volt	usi	L3 Min. Voltage
124	007C	RW	(0:3000) XUT	0.1 Volt	usi	L12 Min. Voltage
126	007E	RW	(0:3000) XVT	0.1 Volt	usi	L23 Min. Voltage
128	0080	Rw	(0:3000) ${ }^{\text {UUT }}$	0.1 Volt	Usi	L31 Min. Voltage
130	0082	RW	(0:6000) \times CT	$\begin{aligned} & \begin{array}{l} 0.001 \\ \text { Amps } \end{array} \end{aligned}$	usi	L1 Min. Current
132	0084	RW	(0:6000) CCT	0.001 Amps	usi	L2 Min. Current
134	0086	Rw	(0:6000) \times CT	$\begin{aligned} & \hline 0.001 \\ & \text { Amps } \end{aligned}$	usi	L3 Min. Current
136	0088	RW	$\begin{array}{\|c\|} \hline \text { 18000:1800) } 18 \mathrm{CT} \\ \text { XUT } \end{array}$	0.1 Watt	s	L1 Min. Active Power
138	008A	RW	$\begin{array}{\|c\|} \hline(- \\ \text { 18000:18000) xCT } \\ \text { xUT } \\ \hline \end{array}$	0.1 Watt	sı	L2 Min. Active Power
140	008C	RW	$\begin{array}{\|c\|} \hline- \\ \substack{18000: 18000) \times C T \\ \text { xUT }} \\ \hline \end{array}$	0.1 Watt	SI	L3 Min. Active Power
142	008E	RW	$\begin{array}{c\|} \hline- \\ \substack{18000: 18000) \times C T \\ \text { xUT }} \end{array}$	0.1 VAr	sı	L1 Min. Reactive Power
144	0090	RW	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { 1800: } 18000) \times C T \\ \text { xUT } \end{array} \\ \hline \end{array}$	0.1 VAr	SI	L2 Min. Reactive Power
146	0092	RW	$\begin{array}{\|c\|} \hline- \\ \hline 18000: 18000) \times C T \\ \text { XUT } \end{array}$	0.1 VAr	sı	L3 Min. Reactive Power
148	0094	RW	(0:18000) CCTXUT	0.1 VA	USI	L1 Min. Apparent Power
150	0096	RW	(0:18000) XCTXUT	0.1 VA	usi	L2 Min. Apparent Power
152	0098	RW	(0:18000) 1 CTXUT	0.1 VA	Usi	L3 Min. Apparent Power
154	009A	RW	$\begin{array}{\|c\|} \hline- \\ \text { 18000:18000) } \mathrm{xCT} \\ \text { xUT } \\ \hline \end{array}$	0.1 Watt	SI	Total Min. Import Active Power
156	009C	RW	$\begin{array}{c\|} \hline(- \\ \substack{18000: 18000) \times C T \\ \text { xUT }} \end{array}$	0.1 Watt	SI	Total Min. Export Active Power
158	009E	RW	$\begin{array}{c\|} (- \\ \text { 18000:18000) xCT } \\ \text { xUT } \end{array}$	0.1 VAr	SI	Total Min. Import Reactive Power
160	00AO	RW	$\begin{array}{c\|} \hline- \\ \begin{array}{c} 18000: 18000) \times C T \\ \text { xUT } \end{array} \\ \hline \end{array}$	0.1 VAr	SI	Total Min. Export Reactive Power
162	00A2	RW	(0:18000)XCTXUT	0.1 VA	Usi	Total Min. Apparent Power
164	00A4	RW	(0:3000) XUT	0.1 Volt	Usi	L1 Max. Voltage
166	00A6	RW	(0:3000) XUT	0.1 Volt	usi	L2 Max. Voltage
168	00A8	RW	(0:3000) XVT	0.1 Volt	usi	L3 Max. Voltage
170	00AA	RW	(0:5000) XUT	0.1 Volt		L12 Max. Voltage
172	OOAC	RW	(0:5000) CUT	0.1 Volt	usi	L23 Max. Voltage
174	00AE	RW	(0:5000) CUT	0.1 Volt	usi	L31 Max. Voltage
176	00B0	RW	(0:6000) CCT	$\begin{aligned} & \hline 0.001 \\ & \text { Amps } \end{aligned}$	usi	L1 Max. Current
178	00B2	RW	(0:6000) CCT	$\begin{aligned} & \hline 0.001 \\ & \text { Amps } \end{aligned}$	USI	L2 Max. Current
180	0084	RW	(0:6000) \times CT		usi	L3 Max. Current
182	0086	RW	$\begin{array}{\|c\|} \hline(- \\ \text { 18000:1800) } \begin{array}{c} \text { xUT } \\ \text { xUT } \end{array} \\ \hline \end{array}$	0.1 Watt	SI	L1 Max. Active Power
184	0088	RW	$\begin{array}{c\|} \hline- \\ \hline \text { 18000:18000) xCT } \\ \text { XUT } \\ \hline \end{array}$	0.1 Watt	si	L2 Max. Active Power
186	00BA	RW	$\begin{array}{\|c\|} \hline- \\ \text { 18000:18000) xCT } \\ \text { xUT } \end{array}$	0.1 Watt	SI	L3 Max. Active Power
188	00BC	RW	$\begin{array}{\|c\|} \hline(- \\ \text { 18000:18000) xCT } \\ \text { xUT } \\ \hline \end{array}$	0.1 VAr	SI	L1 Max. Reactive Power
190	00BE	RW	$\begin{array}{\|c\|} \hline- \\ \text { 18000:18000) } \mathrm{CCT} \\ \text { xUT } \end{array}$	0.1 VAr	si	L2 Max. Reactive Power
192	00c0	RW	$\begin{array}{\|c\|} \hline- \\ \text { 18000:1800) } \mathrm{xCT} \\ \text { xUT } \\ \hline \end{array}$	0.1 VAr	SI	L3 Max. Reactive Power
194	0002	RW	(0:18000) XCTxUT	0.1 VA	USI	L1 Max. Apparent Power
$\begin{array}{\|l\|l\|} \hline 196 \\ \hline \end{array}$	00C4	RW	(0:18000) 0 ¢CTXUT	$\frac{0.1 \mathrm{VA}}{0.1 \mathrm{VA}}$	USI	L2 Max. Apparent Power
198	0006		(0:18000) XCTXUT	0.1 VA	USI	L3 Max. Apparent Power

Type Code:
USI $={ }^{\text {Unsigned integer (4 bytes) }}$
SI
$\begin{array}{ll}\mathrm{SII}= & \begin{array}{l}\text { Signed integer (4 byytes) } \\ \text { LGI }\end{array} \\ \text { Long integer }(8 \text { bytes })\end{array}$

