TE Connectivity Ltd. is a $\$ 14$ billion global technology and manufacturing leader creating a safer, sustainable, productive, and connected future. For more than 75 years, our connectivity and sensor solutions, proven in the harshest environments, have enabled advancements in transportation, industrial applications, medical technology, energy, data communications, and the home. With 80,000 employees, including more than 8,000 engineers, working alongside customers in approximately 140 countries, TE ensures that EVERY CONNECTION COUNTS. Learn more at www.te.com and on Linkedln, Facebook, WeChat and Twitter.

Generation

- Conventional Power
- Nuclear Power
- Wind/Solar
- Hydro-electric

Transmission \& Distribution

- Substation
- Underground
- Overhead
- Street Lighting

Industry

- Mining
- Petrochemical
- Railway
- Shipbuilding

crompton-instruments.com

For email or phone, go to:

crompton-instruments.com
FOR MORE INFORMATION: TE Technical Support Centres
UK +441376509533
USA: $\quad+18003276996$
Australia +611300656090
Singapore +65 65905151
Hong Kong:+852 27909609

crompton-instruments.com

© 2015 TE Connectivity Ltd. family of companies. All Rights Reserved. EPP-2040-11/15
TE Connectivity and the TE connectivity (logo) are trademarks of the TE Connectivity Ltd. family of companies. Crompton is a trademark of Crompton Parkinson and is used under a licence. Other logos, product and Company names mentioned herein may be trademarks of their respective owners. While TE has made every reasonable effort to ensure the accuracy of the information in this brochure, TE does not guarantee that it is error-free, nor does TE make any other representation, warranty or guarantee that the information is accurate, correct, reliable or current. TE reserves the right to make any adjustments to the information contained herein at any time without notice. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. The dimensions in this brochure are for reference purposes only and are subject to change without notice. Specifications are subject to change without notice. Consult TE for the latest dimensions and design specifications.

PROTECTOR TRIP RELAYS

TE'S CROMPTON INSTRUMENTS

CONTENTS

AC Current 2-5
AC Voltage 6-11
Frequency 12-13
Phase Sequence and Phase Failure 14-15
Phase Balance, Sequence and Voltage Monitor 16-17
Synchro-check (Paralleling) 18-19
Reverse Power (Current) 20-21
DC Voltage, Millivolts and Transducer $22-23$
Thermistor. 24-25
Speed Sensing. 26-27
Multifunction Timer Relay 28-30
Doublestage Timer Relay 31
ELR Earth Leakage Protection Relay 32-33
Core Balanced Current Transformers 34
Ground Fault Relay 35-36
Part Numbers 37-38

PROTECTOR TRIP RELAYS

Features

- LED fault indication
- Adjustable nominal voltages, trip points, time delay and differentials
- Compact DIN-rail enclosure
- Power on LED (Green)
- Designed to avoid nuisance tripping

Benefits

- Protection of power assets
- Detection and isolation of faults
- Maintains supply continuity of healthy circuits
- High speed tripping to avoid damage

Applications

- Switchgear
- Distribution systems
- Process control
- Motor protection
- Equipment and network protection

An extensive range of electronic control products providing continuous monitoring and protection of any electrical parameter. When the monitored parameter deviates from the desired set trip limit, the relay will operate to prevent damage to power asset. This versatile range features a host of stylish DIN-rail protectors offering numerous trip functions for single and three-phase power systems, including over and under voltage, current, frequency, phase sequence/failure or balance, reverse power, synchro-check, speed sensing and finally DC inputs.

New Products

Voltage Relays
with Auxiliary

DC Voltage Relays

Lower profile
Earth Leakage Protection Relay

Multifunction Timer Relays

c

AC CURRENT

AC current protectors provide a continuous surveillance of monitored circuits and offer user adjustable trip points (set points) with time delay settings. When the current moves outside the set point limit for longer than the time delay, the relay will operate providing an alarm control or tripping signal.

Basic Parameters

- Universal auxiliary supply 24-240V AC/DC galvanically isolated from monitored current circuit
- Pre-set differential (hysteresis) 1%
- Trip level adjustment between 40-120\% (In)
- Available with 1A or 5A nominal inputs of (In)
- Power on LED (green)

Under Current - PAU

- Single-phase
- Continuously monitors to provide under current protection (set level Imin)
- Adjustable time delay
- 1 module version

Over Current - PAO

- Single-phase
- Continuously monitors to provide over current protection (set level Imax)
- Adjustable time delay
- 1 module version

Under and Over Current - PAD

- Single-phase
- Monitors decrease of current under a set level Imin and simultaneously an over range of current above a set level Imax
- Independently adjustable delay on both over and under set points
- Two output relays
- Three module version

Under or Over Current - PAP/V

- Three-phase, three/four-wire
- Continuously monitors to provide under or over protection (set level In)
- Monitors three-phase current
- Selectable under or over protection
- Six module version

Part number	1-phase	3-phase 3/4-wire	Protection
PAU	x		Under current
PAO	x		Over current
PAD	x		Under and over current
PAP/V		x	Under or over current

Characteristics

PAD

PAP/V

Operation

The set point adjustment range is between 40% and 120% of the nominal current with 1A or 5A nominal input current (via current transformers or direct connection). An internal differential setting of 1% reduces nuisance tripping if the measured signal is noisy or unstable. Relay will trip if the measured current moves outside the set point limit and the red LED indicates a fault condition. An adjustable time delay eliminates premature operation on short duration current fluctuations. During this delay period the red LED will flash. Protectors draw their operating power from a separate auxiliary supply input.

Under Current - PAU
Should the monitored current fall below the set point level Imin, the protector will trip and the red LED will illuminate indicating the fault condition. During the time delay period the red LED will flash for the set time (t) before the relay de-energises output relay contacts. The relay will automatically reset once the monitored current rises above the set point level Imin plus the differential (internally pre-set 1\%) causing the red LED to extinguish and the relay to make without time delay.

Over Current - PAO

Should the monitored current exceed the set point level Imax, the protector will trip and the red LED will illuminate indicating the fault condition. During the time delay period the red LED will flash for the set time (t) before the relay energises output relay contacts. The protector will automatically reset once the monitored current falls below the set point level Imax plus the differential (internally pre-set 1\%) causing the red LED to extinguish and the relay to release without time delay.

Under and Over Current - PAD

- PAD is a combination of both PAU and PAO products.

Under or Over Current - PAP/V

The manner of operation depends on the mode selected at the front panel either Under Current or Over Current.

Note: Red LED indicates fault condition, not relay status.

Protector Overview

PAU, PAO

PAD

PAP/V

Single-phase

Technical parameters	PAU-1	PAU-5	PAO-1	PAO-5	PAD-1	PAD-5
Under current protection (de-energise on trip):	-	-			-	-
Over current protection (energise on trip):			-	-	-	-
Auxiliary supply terminals:	A1, A2					
Auxiliary supply voltage:	24-240V AC/DC					
Auxiliary supply voltage tolerance:	$\pm 10 \%$					
Auxiliary voltage burden (max):	2.6VA/0.8W				3VA/1.2W	
Operating frequency AC:	$45-65 \mathrm{~Hz}$					
Current input terminals:	I1, I2					
Rated current In:	1A AC	5A AC	1A AC	5A AC	1A AC	5A AC
Current input burden (max):	0.1VA	0.5VA	0.1VA	0.5VA	0.1VA	0.5VA
Upper current limit Imax:	Adjustable 40-120\% In					
Lower current limit Imin:	Adjustable 40-120\% In					
Overload capacity -continuous: -max. 3s:	$\begin{gathered} 2 \mathrm{~A} \\ 20 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 50 \mathrm{~A} \end{aligned}$	$\begin{gathered} 2 \mathrm{~A} \\ 20 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 50 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 2 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 50 \mathrm{~A} \\ & \hline \end{aligned}$
Differential (hysteresis):	Internally pre-set at 1\% In					
Time delay:	Adjustable 0.5-10s				Independently adjustable under/over 0.5-10s	
Output relay-contact:	1x change over (AgNi) plated				$2 x$ change over (AgNi) plated	
Output relay-contact terminals:	15, 16, 18				Under 15, 16, 18/over$25,26,28$	
Load capability of relay contact AC:	250V/8A, max. 2000VA					
Load capability of relay contact DC:	30V/8A					
Mechanical life:	3×10^{6} by rated load					
Relay reset:	Automatic					
ANSI no.:	37	37	50	50	37/50	37/50
Operating temperature:	$-2 \mathrm{O}+55^{\circ} \mathrm{C}$					
Storage temperature:	$-30+70^{\circ} \mathrm{C}$					
Electric strength (supplying - contact relay):	$4 \mathrm{kV} / 1 \mathrm{~min}$.					
Overvoltage category:	III.					
Pollution degree:	2					
Enclosure integrity:	IP40 from the front panel/IP10 terminals				IP40 from the front panel/ IP20 terminals	
Enclosure style:	DIN-rail, 1 module				DIN-rail, 3 module	
Case material:	Flame retardant polycarbonate					
Connecting conductors profile (mm^{2}):	max. $2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$				max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$	
Dimensions:	H90xW17.6xD64mm				H90xW52xD65mm	
Weight:	70g	70 g	70 g	70 g	208g	2089
Standards:	EN 60255-6, EN 60255-27, EN 61000-6-2, EN 6100-6-4					

Connection

Three-phase three/four-wire

Technical parameters	PAP/V-1	PAP/V-5
Under current protection (de-energise on trip):	Selectable	Selectable
Over current protection (energise on trip):	Selectable	Selectable
System type:	3-phase (3~)	3-phase (3~)
Auxiliary supply terminals:	A1, A2	
Auxiliary supply voltage:	24-240V AC/DC	
Auxiliary supply voltage tolerance:	$\pm 10 \%$	
Auxiliary voltage burden (max):	3VA/1.2W	
Operating frequency AC:	$45-65 \mathrm{~Hz}$	
Current input terminals L1 phase: L2 phase: L3 phase:	$\begin{aligned} & 11,12 \\ & 13,14 \\ & 15,16 \\ & \hline \end{aligned}$	
Rated current In:	1A AC	5A AC
Current input burden (max):	0.1VA	0.5 VA
Upper current limit Imax:	Adjustable 40-120\% In	
Lower current limit Imin:	Adjustable 40-120\% In	
Overload capacity -continuous: -max. 3s:	$\begin{gathered} 2 \mathrm{~A} \\ 50 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 50 \mathrm{~A} \end{aligned}$
Differential (hysteresis):	Internally pre-set at 1\% In	
Time delay:	Adjustable 0.5-10s	
Output relay-contact:	2 x change over (AgNi) plated	
Output relay-contact terminals:	15, 16, 18 \& 25, 26, 28	
Load capability of relay contact AC:	250V/8A, max. 2000VA	
Load capability of relay contact DC:	30V/8A	
Mechanical life:	3×10^{6} by rated load	
Relay reset:	Automatic	
ANSI no.:	37/50	37/50
Operating temperature:	$-20+55^{\circ} \mathrm{C}$	
Storage temperature:	$-30+70^{\circ} \mathrm{C}$	
Electric strength (supplying - contact relay):	$4 \mathrm{kV} / 1 \mathrm{~min}$.	
Over voltage category:	III.	
Pollution degree:	2	
Enclosure integrity:	IP40 from the front panel/IP20 terminals	
Enclosure style:	DIN-rail, 6 module	
Case material:	Flame retardant polycarbonate	
Connecting conductors profile (mm^{2}):	max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$	
Dimensions:	H90xW105xD64mm	
Weight:	208g	208 g
Standards:	EN 60255-6, EN 60255-27, EN 61000-6-2, EN 6100-6-4	

Connection

PAP/V

AC VOLTAGE

When the measured voltages moves outside the set point limit for longer than the time delay, the relay will operate giving an alarm control or tripping signal. The Protector can be used for under and over voltage detection, start standby generators, operation of mains failure units and switching standby suppliers. An illuminated red LED indicates a fault condition. The three-phase, three or four-wire models with protect each phase independently.

Basic Parameters

- Available with three voltage ranges 100-120V, 173-240V \& 380-480V (Un)
- Trip level adjustment between 75-100\% (Un) Under
- Trip level adjustment between 100-125\% (Un) Over
- Non-phase sequence sensitive
- Adjustable differential (hysteresis) 1-15\%
- Adjustable time delay 0.5-10s (t)
- Power ON LED (green)
- Optional auxiliary voltage

Under Voltage

- Continuously monitors to provide under voltage protection (set level Umin)
- One and three module versions

Part number	1-phase	3-phase 3-wire	3-phase 4-wire
PVU/Z	X		
PVK/J		x	
$P V V / X$			x

Over Voltage

- Continuously monitors to provide over voltage protection (set level Umax)
- One and three module versions

Part number	1-phase	3-phase 3-wire	3-phase 4-wire
PVO/H	x		
PVA/C		x	
PVP/S			x

Under and Over Voltage

- Continuously monitors to provide under and over protection
(set level Umin and Umax)
- Two output relays
- Three module version

Part number	1-phase	3-phase 3-wire	3-phase 4-wire
PVB	x		
PVM		x	x
PVE			

AC Voltage Auxiliary

- Auxiliary option is available on all models.

Example:

- PVV/X-380/480-AUX includes 24V/240V AC/DC auxiliary supply
- PVV/X-380/480 self-powered

Characteristics

PVU/Z

PVK/J, PVV/X

PVO/H

PVA/C, PVP/S

Operation

The set point adjustment range is 25%, operating between 75% and 100% of the nominal supply for under voltage and between 100% and 125% for the over voltage.

The adjustable differential setting range is 1% to 15% and can be used to reduce nuisance tripping if the measured signal is noisy or unstable. In case the measured voltage moves outside the set point limit the protector trips, illuminating the red LED indicating a fault condition.

An adjustable time delay is provided to eliminate premature operation on short duration voltage fluctuations. During this delay period the red LED will flash. The protectors draw their operating power from the measured inputs. Three-phase products monitor the voltage level for each phase and are not phase sequence sensitive.

Under Voltage - PVU/Z, PVK/J, PVV/X

Should the monitored voltage fall below the set point level Umin, the protector will trip and the red LED will illuminate to indicate the fault condition. During the time delay period the red LED will flash for the set time (t) before the relay deenergises. The protector will automatically reset once the monitored voltage rises above the set point level Umin plus the differential (between 1-15\%) causing the red LED to extinguish and the relay to make without time delay. Should the voltage fall below the value of opening level Uoff the protector under red LED will flash indicating a status of low nominal voltage causing the relay contact to return to original status.

Over Voltage - PVO/H, PVA/C, PVP/S
Should the monitored voltage exceed the set point level Umax, the protector will trip and the red LED will illuminate to indicate the fault condition. During the time delay period the red LED will flash for the set time ' t ' before the relay energises. The protector will automatically reset once the monitored voltage falls below the set point level Imax plus the differential (between 1-15\%) causing the red LED to extinguish and the relay to release without time delay. Should the voltage fall below the value of opening level Uoff the protector over red LED will flash indicating a status of low nominal voltage causing the relay contact to return to original status.

Under and Over Voltage - PVB, PVM, PVE

- PVB is a combination of both PVU/Z and PVO/H products
- PVM is a combination of both PVK/J and PVA/C products
- PVE is a combination of both PVV/X and PVP/S products

Note: Red LED indicates fault condition, not relay status.

PVM, PVE

AC VOLTAGE

Protector Overview

Single-phase
PVU/Z, PVO/H

Three-phase three-wire
PVK/J, PVA/C (100/120, 173/240)

Three-phase four-wire
PVV/X, PVP/S (100/120, 173/240)

PVB

PVM (100/120, 173/240, 380/480)
PVK/J, PVA/C (380/480)

PVE (100/120, 173/240, 380/480)
PVV/X, PVP/S (380/480)

Note: when auxiliary option specified (-Aux) terminals A1 and A2 are present for connection of the Voltage/Auxiliary supply.

AC VOLTAGE

Single-phase

Technical parameters	$\begin{array}{\|c\|} \hline \mathrm{PVU} / \mathrm{Z}-100 \\ / 120 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { PVU/Z-173 } \\ \hline \end{array}$	$\begin{gathered} \text { PVU/Z-380 } \\ \text { /480 } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{PVO} / \mathrm{H}-100 \\ / 120 \end{array}$	$\begin{array}{\|c\|} \hline \text { PVO/H-173 } \\ \hline \end{array}$	$\begin{gathered} \hline \text { PVO/H-380 } \\ \text { /480 } \\ \hline \end{gathered}$	$\begin{gathered} \text { PVB-100 } \\ \hline 120 \end{gathered}$	$\begin{aligned} & \text { PVB-173 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { PVB-380 } \\ \hline \end{gathered}$
Under voltage protection (de-energise on trip):
Over voltage protection (energise on trip):				-	-	-	-	-	-
System type:	1-phase (1~)								
Voltage input terminals:	L1, N								
Nominal voltage (L-N) (Adjustable):	$\begin{gathered} 57.7,63.5 \\ 69.3 \mathrm{~V} \end{gathered}$	$\begin{array}{\|c\|} \hline 100,110, \\ 115,120,127, \\ 139 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \hline 220,230, \\ & 240,254, \\ & 265,277 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { 57.7, } 63.5, \\ 69.3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 100,110, \\ 115,120,127, \\ 139 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 220,230, \\ & 240,254, \\ & 265,277 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { 57.7, } 63.5 \\ 69.3 \mathrm{~V} \end{gathered}$	$\begin{array}{\|c\|} \hline 100,110, \\ 115,120,127, \\ 139 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 220,230, \\ & 240,254, \\ & 265,277 \mathrm{~V} \end{aligned}$
Voltage burden (max):	1VA/0.7W		1VA/0.7W	$\begin{gathered} \text { 1.8VA/1.1W } \\ \text { PV/H-380/480 } \\ \hline \end{gathered}$		3VA/1.7W			
Operating frequency AC:	$45-65 \mathrm{~Hz}$								
Trip level under Umin:	Adjustable 75-100\% Un								
Trip level over Umax:	Adjustable 100-125\% Un								
Overload capacity -continuous: (L-N): -max. 10s: (L-N): Opening level off (L-N):	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \\ 38 \mathrm{~V} \end{gathered}$	$\begin{gathered} 174 \mathrm{~V} \\ 209 \mathrm{~V} \\ 66 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \\ & 145 \mathrm{~V} \end{aligned}$	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \\ 38 \mathrm{~V} \end{gathered}$	$\begin{gathered} 174 \mathrm{~V} \\ 209 \mathrm{~V} \\ 66 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \\ & 145 \mathrm{~V} \end{aligned}$	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \\ 38 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 174 \mathrm{~V} \\ 209 \mathrm{~V} \\ 66 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \\ & 145 \mathrm{~V} \end{aligned}$
Differential (hysteresis):	Adjustable 1-15\% Un								
Time delay:	Adjustable 0.5-10s (t)								
Output relay-contact:	1 x change over (AgNi) plated								
Output relaycontact terminals:	15, 16, 18	15, 16, 18	15, 16, 18	15, 16, 18	15, 16, 18	15, 16, 18	Under 25, 26, 28/Over 15, 16, 18		
Load capacity AC:	250V/8A, max. 2000VA								
Load capacity DC:	30V/8A								
Mechanical life:	3×10^{6} by rated load								
Relay reset:	Automatic								
ANSI no.:	27	27	27	59	59	59	27/59	27/59	27/59
Operating temp:	$-20+55^{\circ} \mathrm{C}$								
Storage temp:	$-30+70^{\circ} \mathrm{C}$								
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$.								
Overvoltage category:	III.								
Pollution degree:	2								
Enclosure integrity:	IP40 from the front panel/IP10 terminals		IP40 from the front panel/ IP20 terminals	IP40 from the front panel/IP10 terminals		IP40 from the front panel/IP20 terminals			
Enclosure style:	DIN-rail, 1 module			DIN-rail, 1 module			DIN-rail, 3 module		
Case material:	Flame retardant polycarbonate								
Connecting conductors:	max. $2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$		$\begin{gathered} \mathrm{max} .2 \times 1.5 \mathrm{~mm}^{2} \\ / 1 \times 2.5 \mathrm{~mm}^{2} \end{gathered}$	max. $2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$		max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$			
Dimensions:	H90xW17.6xD64mm					H90xW52xD65mm			
Weight:	65 g					125 g			
Standards:	EN 60255-6, EN 60255-27, EN 61000-6-2, EN 6100-6-4								
Optional (specify at the time of ordering, include -AUX to product part number)									
Auxiliary supply voltage	24V/240V AC/DC								
A.C. supply frequency	$45-65 \mathrm{~Hz}$								
Supply voltage tolerance	10\% +/-								
Auxiliary voltage burden (Max)	3VA/1.2W								
Enclosure style	DIN-rail, 3 module								
Output relay-contact	$2 x$ change over (AgNi) plated								
Output relay-contact terminals	15, 16, 18 \& 25, 26, 28								

Connection

PVU/Z, PVO/H

Auxiliary Option

AC VOLTAGE

Three-phase three-wire

Technical parameters	$\begin{gathered} \text { PVK/J-100 } \\ / 120 \\ \hline \end{gathered}$	$\begin{gathered} \text { PVK/J-173 } \\ \hline / 240 \\ \hline \end{gathered}$	$\begin{gathered} \text { PVK/J-380 } \\ \hline \end{gathered}$	$\begin{gathered} \text { PVA/C-100 } \\ / 120 \end{gathered}$	$\begin{gathered} \text { PVA/C-173 } \\ \hline / 240 \\ \hline \end{gathered}$	$\begin{gathered} \text { PVA/C-380 } \\ \hline 1480 \\ \hline \end{gathered}$	$\begin{gathered} \text { PVM-100 } \\ / 120 \end{gathered}$	$\begin{gathered} \text { PVM-173 } \\ \text { /240 } \end{gathered}$	$\begin{gathered} \text { PVM-380 } \\ \hline \end{gathered}$
Under voltage protection (de-energise on trip):
Over voltage protection (energise on trip):				-	-	-	-	-	-
System type:	3-phase 3-wire (3~)	3-phase 3-wire (3-)	3-phase 3-wire (3~)	3-phase 3-wire (3-)					
Voltage input terminals:	L1, L2, L3								
Nominal voltage (L-L) (Adjustable):	$\begin{gathered} \text { 100, 110, } \\ 120 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { 173, 190, } \\ 200,208, \\ 220,240 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 380,400, \\ 415,440, \\ 460,480 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { 100, 110, } \\ 120 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { 173, 190, } \\ 200,208, \\ 220,240 \mathrm{~V} \end{gathered}$	$\begin{gathered} 380,400, \\ 415,440, \\ 460,480 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { 100, 110, } \\ & 120 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 173,190, \\ 200,208, \\ 220,240 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & 380,400, \\ & 415,440, \\ & 460,480 \mathrm{~V} \end{aligned}$
Voltage burden (max):	1VA/0.7W		3VA/1.7W	1.8VA/1.1W		3VA/1.7W			
Operating frequency AC:	$45-65 \mathrm{~Hz}$								
Trip level under Umin:	Adjustable 75-100\% Un								
Trip level under Umax:	Adjustable 100-125\% Un								
Overload capacity -continuous: (L-L): -max. 10s: (L-L): Opening level off (L-L):	$\begin{aligned} & 150 \mathrm{~V} \\ & 180 \mathrm{~V} \\ & 73 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 300 \mathrm{~V} \\ & 360 \mathrm{~V} \\ & 126 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 600 \mathrm{~V} \\ & 720 \mathrm{~V} \\ & 277 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} \\ & 180 \mathrm{~V} \\ & 73 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 300 \mathrm{~V} \\ & 360 \mathrm{~V} \\ & 126 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 600 \mathrm{~V} \\ & 720 \mathrm{~V} \\ & 277 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} \\ & 180 \mathrm{~V} \\ & 73 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 300 \mathrm{~V} \\ & 360 \mathrm{~V} \\ & 126 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 600 \mathrm{~V} \\ & 720 \mathrm{~V} \\ & 277 \mathrm{~V} \end{aligned}$
Differential (hysteresis):	Adjustable 1-15\% Un								
Time delay:	Adjustable 0.5-10s (t)								
Output relay-contact:	1x change over (AgNi) plated		$2 x$ change over (AgNi) plated	1x change over (AgNi) plated		2 x change over (AgNi) plated			
Output relaycontact terminals:	5,16,18	15, 16, 18	$\begin{array}{r} 15,16,18 \\ \& 25,26,28 \\ \hline \end{array}$	15, 16, 18	15, 16, 18	$\begin{gathered} 15,16,18 \\ \& 25,26,28 \\ \hline \end{gathered}$	Under 15, 16, 18/Over 25, 26, 28		
Load capacity AC:	250V/8A, max.2000VA								
Load capacity DC:	30V/8A								
Mechanical life:	3×10^{6} by rated load								
Relay reset:	Automatic								
ANSI no.:	27	27	27	59	59	59	27/59	27/59	27/59
Operating temp:	$-20+55^{\circ} \mathrm{C}$								
Storage temp:	$-30+70^{\circ} \mathrm{C}$								
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$.								
Overvoltage category:	III.								
Pollution degree:	2								
Enclosure integrity /IP10 terminals:	IP40 from the front panel/IP10 terminals		IP40 from the front panel/ IP20 terminals	IP40 from the front panel/IP10 terminals		IP40 from the front panel/IP20 terminals			
Enclosure style:	DIN-rail, 1 module		DIN-rail, 3 module	DIN-rail, 1 module		DIN-rail, 3 module			
Case material:	Flame retardant polycarbonate								
Connecting conductors profile (mm^{2}):	max. $2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$		$\begin{array}{\|c\|} \hline \mathrm{max} .2 \times 1.5 \mathrm{~mm}^{2} \\ / 1 \times 2.5 \mathrm{~mm}^{2} \\ \hline \end{array}$	max. $2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$		max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$			
Dimensions:	H90xW17.6xD64mm		$\begin{aligned} & \mathrm{H} 90 \times \mathrm{W} 52 \\ & \times \mathrm{D} 65 \mathrm{~mm} \end{aligned}$	H90xW17.6xD64mm		H90xW52xD65mm			
Weight	65 g		125 g	65 g		125 g			
Standards	EN 60255-6, EN 60255-27, EN 61000-6-2, EN 6100-6-4								
Optional (specify at the time of ordering, include -AUX to product part number)									
Auxiliary supply voltage	24V/240V AC/DC								
A.C. supply frequency	$45-65 \mathrm{~Hz}$								
Supply voltage tolerance	10\% +/-								
Auxiliary voltage burden (Max)	3VA/1.2W								
Enclosure style	DIN-rail, 3 module								
Output relay-contact	2 x change over (AgNi) plated								
Output relay-contact terminals	15, 16, 18 \& 25, 26, 28								

Connection

PVK/J, PVA/C
PVM (100/120, 173/240, 380/480)
(100/120, 173/240)
PVK/J, PVA/C (380/480)

Auxiliary Option

AC VOLTAGE

Three-phase four-wire

Technical parameters	$\begin{gathered} \hline \text { PVV/X-100 } \\ / 120 \\ \hline \end{gathered}$	$\begin{gathered} \text { PVV/X-173 } \\ \hline 1240 \\ \hline \end{gathered}$	$\begin{gathered} \text { PVV/X-380 } \\ \hline / 480 \end{gathered}$	$\begin{gathered} \text { PVP/S-100 } \\ / 120 \\ \hline \end{gathered}$	$\begin{gathered} \text { PVP/S-173 } \\ \hline / 240 \\ \hline \end{gathered}$	$\begin{gathered} \text { PVP/S-380 } \\ \text { /480 } \end{gathered}$	$\begin{gathered} \text { PVE-100 } \\ / 120 \end{gathered}$	$\begin{aligned} & \text { PVE-173 } \\ & \text { /240 } \end{aligned}$	$\begin{gathered} \text { PVE-380 } \\ \text { /480 } \end{gathered}$
Under voltage protection (de-energise on trip):	-
Over voltage protection (energise on trip):				-	\cdots	-	-	-	-
System type:	3-phase 4-wire (3~)	$\begin{gathered} \text { 3-phase } \\ \text { 4-wire (3-) } \end{gathered}$	$\begin{gathered} \text { 3-phase } \\ \text { 4-wire (3~) } \end{gathered}$	3-phase 4-wire (3~)	$\begin{gathered} \text { 3-phase } \\ \text { 4-wire (3~) } \end{gathered}$	3-phase 4-wire (3~)	$\begin{gathered} \text { 3-phase } \\ \text { 4-wire (3-) } \end{gathered}$	$\begin{gathered} \text { 3-phase } \\ \text { 4-wire (3-) } \end{gathered}$	3-phase 4-wire (3-)
Voltage input terminals:	L1, L2, L3, N								
Nominal voltage (L-N) (Adjustable):	$\begin{gathered} \text { 57.7, } 63.5, \\ 69.3 \mathrm{~V} \end{gathered}$	$\begin{gathered} 100,110, \\ 115,120,127, \\ 139 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 220,230, \\ & 240,254, \\ & 265,277 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { 57.7, } 63.5, \\ 69.3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { 100, 110, } \\ & 115,120, \\ & 127,139 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 220,230, \\ & 240,254, \\ & 265,277 \mathrm{~V} \end{aligned}$	$\begin{gathered} 57.7,63.5, \\ 69.3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { 100, 110, } \\ & \text { 115, 120, } \\ & 127,139 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 220,230, \\ & 240,254, \\ & 265,277 \mathrm{~V} \end{aligned}$
Voltage burden (max):	1VA/0.7W		3VA/1.7W	1.8VA/1.1W		3VA/1.7W			
Operating frequency AC:	$45-65 \mathrm{~Hz}$								
Trip level under Umin:	Adjustable 75-100\% Un								
Trip level under Umax:	Adjustable 100-125\% Un								
Overload capacity -continuous: (L-N): -max. 10s: (L-N): Opening level off (L-N):	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \\ 42 \mathrm{~V} \end{gathered}$	$\begin{gathered} 174 \mathrm{~V} \\ 209 \mathrm{~V} \\ 73 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \\ & 145 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 87 \mathrm{~V} \\ & 416 \mathrm{~V} \\ & 161 \mathrm{~V} \end{aligned}$	$\begin{gathered} 174 \mathrm{~V} \\ 209 \mathrm{~V} \\ 73 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \\ & 161 \mathrm{~V} \end{aligned}$	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \\ 42 \mathrm{~V} \end{gathered}$	$\begin{gathered} 174 \mathrm{~V} \\ 209 \mathrm{~V} \\ 73 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \\ & 161 \mathrm{~V} \end{aligned}$
Differential (hysteresis):	Adjustable 1-15\% Un								
Time delay:	Adjustable 0.5-10s (t)								
Output relay-contact:	1x change over (AgNi) plated		$2 x$ change over (AgNi) plated	$1 \times$ change over (AgNi) plated		2 x change over (AgNi) plated			
Output relaycontact terminals:	15, 16, 18	15, 16, 18	$\begin{aligned} & 15,16,18 \& \\ & 25,26,28 \\ & \hline \end{aligned}$	15, 16, 18	15, 16, 18	15, 16, 18	Under 15, 16, 18/Over 25, 26, 28		

Load capacity AC:

Mechanical life:	$30 \mathrm{~V} / 8 \mathrm{~A}$
R	3×10^{6} by rated load

Relay reset:	Automatic								
ANSI no.:	27	27	27	59	59	59	27/59	27/59	27/59
Operating temp:	$-20+55^{\circ} \mathrm{C}$								
Storage temp:	$-30+70^{\circ} \mathrm{C}$								
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$.								
Overvoltage category:	III								

Overvoltage category:
Pollution degree:

Enclosure integrity:

| IP40 from the front |
| :--- | :---: |
| panel/IP10 terminals |

Case material:
Connecting conductors profile (mm^{2}):
Dimensions:
Weight:
Standards:

| IP40 from the |
| :---: | :---: |
| front panel/ |
| IP20 terminals |$|$

max. $2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$	m
$\mathrm{H} 90 \times \mathrm{W} 17.6 \times D 64 \mathrm{~mm}$	
65 g	

Flame retardant polycarbonate			
max. $2 \times 1.5 \mathrm{~mm}^{2}$ $/ 1 \times 2.5 \mathrm{~mm}^{2}$	$\operatorname{max.~} 2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$	$\operatorname{max.~} 2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$	
$\mathrm{H} 90 \times \mathrm{W} 52$ $\times D 65 \mathrm{~mm}$	$\mathrm{H} 90 \times \mathrm{W} 17.6 \times \mathrm{D} 64 \mathrm{~mm}$	$\mathrm{H} 90 \times \mathrm{W} 52 \times \mathrm{D} 65 \mathrm{~mm}$	
125 g	65 g	125 g	

Optional (specify at the time of ordering, include -AUX to product part number)

Auxiliary supply voltage
A.C. supply frequency
Supply voltage tolerance
Auxiliary voltage burden (Max)
Enclosure style
Output relay-contact
Output relay-contact terminals

age	$24 \mathrm{~V} / 240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
y	$45-65 \mathrm{~Hz}$
den	$10 \%+/-$
	$3 \mathrm{VA} / 1.2 \mathrm{~W}$
	DIN-rail, 3 module
	$2 \times$ change over (AgNi) plated
$15,16,18 \& 25,26,28$	

Connection

PVV/X, PVP/S
(100/120, 173/240)

PVE (100/120, 173/240, 380/480)
PVV/X, PVP/S (380/480)

Auxiliary Option

The frequency protector trip relay provides a continuous surveillance of the monitored circuits and offers user adjustable trip points (set points) with time delay and differential (hysteresis) settings. When the frequency moves outside the set point limits for longer than the time delay, the relay will operate giving an alarm control or tripping signal. Since speed is proportional to frequency, this protector can be used to monitor under and over speed to protect mains, computers supplies and standby supplies.

Basic Parameters

- Adjustable rated frequency, 50,60 or 400 Hz
- Trip level adjustment between 80-120\% (Fn) Under
- Trip level adjustment between 80-120\% (Fn) Over
- Adjustable differential (hysteresis) 0.5-5\%
- Adjustable time delay 0.5-10s (t)
- Power on LED (green)

Under and Over Frequency

- Continuously monitors frequency to provide under and over frequency protection (set level Fmin and Fmax)
- Three module version
- 2 output relays
- Single phase

Part number	1-phase
PHD	x

Under and Over Frequency - PHD

The Frequency protector set point adjustment range is centred around the nominal system frequency of 50,60 or 400 Hz . The adjustable differential setting can be used to reduce nuisance tripping if the measured signal is noisy or unstable. Under normal conditions, with the supply frequency close to the nominal set point, both red LEDs are off with the Under relay energised and the Over relay de-energised. Should the supply fall below the opening threshold, both relays will de-energise and both red LEDs will flash slowly to indicate insufficient supply voltage.

Under protection

Should the monitored frequency falls below the set point level, Fmin, the protector trips and the red LED illuminates to indicate the fault condition. During the time delay period the red LED will flash for the set time, (t), before the relay de-energises (output relay-contact terminals $15,16 \& 18$). The relay automatically resets once the monitored frequency rises above the set point level Fmin plus the differential (between 0.5-5\%). Causing the red LED to extinguish and the relay to make without time delay.

Over protection

Should the monitored frequency exceed the set point level Fmax, the protector trip and the red LED illuminates to indicate the fault condition. During the time delay period the red LED will flash for the set time (t) before the relay energises (output relay-contacts terminals $25,26 \& 28$). The relay automatically resets once the monitored frequency falls below the set point level Fmax plus the differential (between 0.5-5\%). Causing the red LED to extinguish and the relay to release without time delay.

Note: Red LED indicates fault condition, not relay status
Characteristics

Single-phase

Technical parameters	PHD-100/120	PHD-173/240	PHD-380/480	PHD-280/860
Under frequency protection (de-energise on trip):	-	-	-	-
Over frequency protection (energise on trip):	-	-	-	-
System type:	1-phase (1~)	1-phase (1~)	1-phase (1~)	1-phase (1~)
Supply input terminals:	L, N			
Supply voltage:	43-87V	71-174V	161-346V	161-500V
Rated frequency Fn:	50/60/400 Hz			
Supply input burden (max):	1.6VA/1W approx			
Supply opening threshold Uopen:	43V	71V	161 V	161V
Under frequency range Fmin:	Adjustable 80-120\% In			
Over frequency range Fmax:	Adjustable 80-120\% In			
Overload capacity -continuous: -max. 10s:	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 174 \mathrm{~V} \\ & 209 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & 550 \mathrm{~V} \end{aligned}$
Differential (hysteresis):	Adjustable 0.5-5\% Fn			
Time delay:	Adjustable 0.5-10s			
Output relay-contact:	2 x change over (AgNi) plated			
Output relay-contact terminals:	Under 15, 16, 18/Over 25, 26, 28			
Load capacity AC:	250V/8A, max. 2 kVA			
Load capacity DC:	30V/8A			
Mechanical life:	3×10^{6} by rated load			
Relay reset:	Automatic			
ANSI no.:	810/U			
Operating temperature:	$-20+55^{\circ} \mathrm{C}$			
Storage temperature:	$-30+70^{\circ} \mathrm{C}$			
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$.			
Overvoltage category:	III.			
Pollution degree:	2			
Enclosure integrity:	IP40 from the front panel/IP20 terminals			
Enclosure style:	DIN-rail, 3 module			
Case material:	Flame retardant polycarbonate			
Connecting conductors profile (mm^{2}):	max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$			
Dimensions:	H90xW52xD64mm			
Weight:	124g approx			
Standards:	EN 60255-6, EN 60255-27, EN61000-6-2, EN6100-6-4			

Protector Overview

PHD

Connection
PHD

PHASE SEQUENCE AND PHASE FAILURE

The phase sequence and phase failure protector trip relay is designed to monitor the correct phase rotation or sequence of a three-phase supply system. It provides protection against incorrect phase sequence, loss of one phase and under voltage. Two versions are available to suit either three-phase three-wire (PVR3) or threephase four-wire (PVR4) systems.

Basic Parameters

- Available with three voltage ranges 100-120V, 173-240V \& 380-480V (Un)
- Adjustable nominal voltage range
- Power on LED (green)
- Fixed differential (hysteresis) 1%

Part number	3-phase 3-wire	3-phase 4-wire	Protection
PVR3	x		Phase sequence, under voltage 85\%
PVR4		x	Phase sequence, under voltage 85\%

Operation

Applications where the involvement of three-phase motors which can rotate in the wrong direction, potentially could lead to physical damage or risk of injury to personnel, yet voltage and current readings may still appear normal. If one phase is lost because of a blown fuse, electric motors can continue to operate (single-phasing) which can result in severe electrical or mechanical damage. For permanent installations, this relay should be used to monitor the incoming supply, protecting all equipment against incorrect connection at initial installation or after maintenance work. Rotating machines that can not tolerate reverse rotation or pose significant risk to personnel under this condition should be individually protected with this relay.

The phase sequence and phase failure protector continuously monitors the three-phase supply. With the correct phase sequence applied, the front panel LED will be off and the relay energised. An incorrect sequence or missing phase will de-energise the relay and the LED will illuminate showing a fault condition. The supply falling below 85% of its nominal voltage will also cause a trip.

Note: If one phase is lost due to a blown fuse, some loads can re-generate the missing voltage. This relay can be used as a phase failure relay providing the regenerated voltage in open phase is less than 70% of the nominal supply voltage. If there is the possibility of a higher regenerated voltage, the phase balance PSF should be used.

Characteristics

PHASE SEQUENCE AND PHASE FAILURE

Technical parameters	PVR3-100/120	PVR3-173/240	PVR3-380/480	PVR4-100/120	PVR4-173/240	PVR4-380/480
Phase sequence under voltage 85\% (de-energise on trip):	-	-	-	-	-	-
System type:	3-phase 3-wire (3~)	3-phase 3-wire (3~)	3-phase 3-wire (3~)	$\begin{gathered} \text { 3-phase } \\ \text { 4-wire (3-) } \end{gathered}$	$\begin{gathered} \text { 3-phase } \\ \text { 4-wire (3-) } \end{gathered}$	$\begin{gathered} \text { 3-phase } \\ \text { 4-wire (3-) } \end{gathered}$
Supply input terminals:	L1, L2, L3			L1, L2, L3, N		
Rated voltage Un (V nom)	100, 110, 120	$\begin{aligned} & 173,190,200 \\ & 208,220,240 \end{aligned}$	$\begin{aligned} & 380,400,415, \\ & 440,460,480 \end{aligned}$	57.7, 63.5, 69.3	$\begin{aligned} & 100,110,115, \\ & 120,127,139 \end{aligned}$	$\begin{aligned} & 220,230,240, \\ & 254,265,277 \end{aligned}$
Operating frequency:	$45-65 \mathrm{~Hz}$					
Supply input burden (max):	3VA/1.7W approx			2.5VA/1.4W approx		
Supply threshold (Umin):	Fixed at 85% of V nom					
Overload capacity -continuous: -max. 10s:	$\begin{aligned} & 150 \mathrm{~V} \\ & 180 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 300 \mathrm{~V} \\ & 360 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 600 \mathrm{~V} \\ & 720 \mathrm{~V} \end{aligned}$	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & 174 \mathrm{~V} \\ & 209 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \\ & \hline \end{aligned}$
Differential (hysteresis):	Fixed at 1\% of V nom					
Trip reset delay:	Fixed at 0.5s					
Output relay-contact:	1x change over (AgNi) plated		$2 x$ change over (AgNi) plated	1x change over (AgNi) plated		$2 x$ change over (AgNi) plated
Output relay-contact terminals:	15, 16, 18	15, 16, 18	$\begin{aligned} & 15,16,18 \& \\ & 25,26,28 \end{aligned}$	15, 16, 18	15, 16, 18	$\begin{gathered} 15,16,18 \& \\ 25,26,28 \end{gathered}$
Load capacity AC:	250V/8A, max. 2 KVA					
Load capacity DC:	30V/8A					
Mechanical life:	3×10^{6} by rated load					
Relay reset:	Automatic					
ANSI no.:	47					
Operating temperature:	$-20+55^{\circ} \mathrm{C}$					
Storage temperature:	$-30+70^{\circ} \mathrm{C}$					
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$.					
Overvoltage category:	III.					
Pollution degree:	2					
Enclosure integrity:	IP40 from the front panel/ IP10 terminals		IP40 from the front panel/ IP20 terminals	IP40 from the front panel/ IP10 terminals		IP40 from the front panel/ IP20 terminals
Enclosure style:	DIN-rail, 1 module		DIN-rail, 3 module	DIN-rail, 1 module		DIN-rail, 3 module
Case material:	Flame retardant polycarbonate					
Connecting conductors:	$\max .2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$		$\underset{/ 1 \times 2.5 \mathrm{~mm}^{2}}{\mathrm{max} .2 \times 1.5 \mathrm{~mm}^{2}}$	max. $2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$ $90 \times 17.6 \times 64 \mathrm{~mm} / 1 \times 2.5 \mathrm{~mm}^{2}$		max. $2 \times 1.5 \mathrm{~mm}^{2}$
Dimensions:	H90xW17.6xD64mm		$\begin{aligned} & \text { H90xW52x } \\ & \text { D64mm } \end{aligned}$	H90xW17.6xD64mm		$\begin{aligned} & \text { H90xW52x } \\ & \text { D64mm } \end{aligned}$
Weight:	63g approx		121g approx	63 g approx		121g approx
Standards:	EN 60255-6, EN 60255-27, EN61000-6-2, EN6100-6-4					

Protector Overview
PVR3/4 (100/120, 173/240)

Connection
PVR3/4

PHASE BALANCE, SEQUENCE AND VOLTAGE MONITOR

The phase balance, sequence and voltage protector trip relay, is designed to monitor a three-phase supply for phase imbalance, low or missing phases or incorrect phase sequence and to trip a relay if it detects any anomaly. Two versions are available to suit either three-phase three-wire (PSF/G3) or three-phase fourwire (PSF/G4) systems.

Basic Parameters

- Available with three voltage ranges 100-120V, 173-240V and 380-480V (Un)
- Adjustable nominal voltage range
- Adjustable trip delay 0.5-10s
- Adjustable low voltage trip level 50-85\%
- Adjustable phase imbalance trip level 5-15\%
- Power on LED (green)
- Fixed differential (hysteresis) 1%

Part number	3-phase 3-wire	3-phase 4-wire	Protection
PSF/G3	x		Phase sequence, phase balance and under voltage
PSF/G4		x	Phase sequence, phase balance and under voltage

Operation

Rotating machines are particularly vulnerable to incorrect phase sequence, and rotate in the wrong direction, potentially leading to physical damage or the risk of injury to personnel. If one phase is lost because of a blown fuse, electric motors can continue to operate (single-phasing) which can result in severe electrical or mechanical damage.

The PSF protector continuously monitors the three-phase supply, with all correct phase sequence applied and all three voltages balanced within the required limits the front panel, the LED will be off and the relay energised. An incorrect sequence, missing phase, out of balance or under voltage condition will de-energise the relay and the LED will illuminate. The set point control allows adjustment of the voltage imbalance, if one phase voltage differs from the other by more than the set percentage, between 5% and 15%, than the relay will de-energise and the LED will illuminate. The time delay function operates only for the voltage imbalance condition. This delay can be used to prevent nuisance tripping due to short term imbalance situations.

Characteristics

PHASE BALANCE, SEQUENCE AND VOLTAGE MONITOR

Technical parameters	$\begin{gathered} \text { PSF/G3-100/ } \\ 120 \end{gathered}$	$\begin{gathered} \text { PSF/G3-173/ } \\ 240 \end{gathered}$	$\begin{gathered} \text { PSF/G3-380/ } \\ 480 \end{gathered}$	$\begin{gathered} \text { PSF/G4-100/ } \\ 120 \end{gathered}$	$\begin{gathered} \text { PSF/G4-173/ } \\ 240 \end{gathered}$	$\begin{gathered} \text { PSF/G4-380/ } \\ 480 \end{gathered}$
Phase loss, imbalance and under voltage (de-energise on trip):	-	-	-	-	-	-
System type:	3-phase 3-wire (3~)	3-phase 3-wire (3~)	3-phase 3-wire (3~)	$\begin{gathered} \text { 3-phase } \\ \text { 4-wire (3~) } \end{gathered}$	3-phase 4-wire (3~)	3-phase 4-wire (3~)
Supply input terminals:	L1, L2, L3			L1, L2, L3, N		
Rated voltage Un (V nom) :	100, 110, 120	$\begin{aligned} & 173,190,200, \\ & 208,220,240 \end{aligned}$	$\begin{aligned} & 380,400,415, \\ & 440,460,480 \end{aligned}$	57.7, 63.5, 69.3	$\begin{aligned} & 100,110,115, \\ & 120,127,139 \end{aligned}$	$\begin{aligned} & 220,230,240, \\ & 254,265,277 \\ & \hline \end{aligned}$
Operating frequency:	$45-65 \mathrm{~Hz}$					
Supply input burden (max):	3VA/1.7W approx			2.5VA/1.4W approx		
Phase imbalance trip level (V nom) :	Adjustable 5-15\% Un (V nom)					
Differential (hysteresis):	Fixed at 1\% of V nom					
Low-voltage trip level (Umin):	Adjustable 50-85\% Un (V nom)					
Trip delay t:	Adjustable 0.5-10s					
Trip reset delay t1:	Fixed at 0.5s					
Overload capacity -continuous: -max. 10s: Max operating voltage (Uoff)	$\begin{aligned} & 150 \mathrm{~V} \\ & 180 \mathrm{~V} \\ & 187 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 300 \mathrm{~V} \\ & 360 \mathrm{~V} \\ & 374 \mathrm{~V} \end{aligned}$	300V 600V 749V	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \\ 108 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 174 \mathrm{~V} \\ & 209 \mathrm{~V} \\ & 216 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \\ & 432 \mathrm{~V} \end{aligned}$
Differential (hysteresis):	Fixed at 1\% of V nom					
Output relay-contact:	1x change over (AgNi) plated		$2 x$ change over (AgNi) plated	1x change over (AgNi) plated		2x change over (AgNi) plated
Output relay-contact terminals:	15, 16, 18	15, 16, 18	$\begin{gathered} 15,16,18 \& \\ 25,26,28 \end{gathered}$	15, 16, 18	15, 16, 18	$\begin{aligned} & 15,16,18 \& \\ & 25,26,28 \end{aligned}$
Load capacity AC:	250V/8A, max. 2 kVA					
Load capacity DC:	30V/8A					
Mechanical life:	3×10^{6} by rated load					
Relay reset:	Automatic					
ANSI no.:	47					
Operating temperature:	$-20+55^{\circ} \mathrm{C}$					
Storage temperature:	$-30+70^{\circ} \mathrm{C}$					
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$.					
Overvoltage category:	III.					
Pollution degree:	2					
Enclosure integrity:	IP40 from the front panel/ IP10 terminals		IP40 from the front panel/ IP20 terminals	IP40 from the front panel/ IP10 terminals		IP40 from the front panel/ IP20 terminals
Enclosure style:	DIN-rail, 1 module		DIN-rail, 3 module	DIN-rail, 1 module		DIN-rail, 3 module
Case material:	Flame retardant polycarbonate					
Connecting conductors profile (mm^{2}):	max. $2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$		$\underset{/ 1 \times 2.5 \mathrm{~mm}^{2}}{\max .2 \times 1.5 \mathrm{~mm}^{2}}$	max. $2 \times 2.5 \mathrm{~mm}^{2} / 1 \times 4 \mathrm{~mm}^{2}$		$\underset{/ 1 \times 2.5 \mathrm{~mm}^{2}}{\max .2 \times 1.5 \mathrm{~mm}^{2}}$
Dimensions:	H90xW17.6xD64mm		$\begin{aligned} & \mathrm{H} 90 \times \mathrm{W} 52 \mathrm{x} \\ & \mathrm{D} 64 \mathrm{~mm} \end{aligned}$	H90xW17.6xD64mm		$\begin{gathered} \mathrm{H} 90 \times \mathrm{W} 52 \mathrm{x} \\ \mathrm{D} 64 \mathrm{~mm} \end{gathered}$
Weight:	63g approx		121g approx	63 g approx		121g approx
Standards:	EN 60255-6, EN 60255-27, EN61000-6-2, EN6100-6-4					

Protector Overview
PSF/G3/4 (100/120, 173/240)

Connection
PSF/G3/4

The synchro-check (paralleling) protector trip relay compares the voltage, frequency and phase angle of two supplies and operates a relay according to the state of synchronisation of the supplies. If the two supplies are not synchronised, the relay operates to provide a control output. The relay output can be used for alarm or control purposes.

The unit also provides a dead bus function. If the bus supply fails, the relay operates and the output can be used to switch in an emergency generator.

Basic Parameters

- Available with three voltage ranges
- Adjustable nominal voltage range
- Adjustable synch tolerance
- Dead bus function on/off switch
- Power on LED (green)

Part number	1-phase, 3-phase 3-wire/4-wire	Protection
PLL/D	x	Phase angle and voltage dead bus option

Operation

As part of a manual control system, the operator will make adjustments to generator voltage (excitation) and frequency (engine speed) using a synchroscope or lamps and will then attempt to manually close the breaker. This synchro check protector will qualify that two systems are closely matched before permitting the breaker to close. As part of an automatic synchronising arrangement, the synchro-check (paralleling) trip relay can be used as an independent backup or checking device to ensure the two systems are suitably matched before the breaker can close.

The synchro-check (paralleling) trip relay continuously monitors the voltage, phase displacement and frequency of the two supplies. While the two supplies match in volts, frequency and phase to the degree set by the \%Volts control, the sync LED illuminates and the relay is energised, indicating that the two supplies are matched and it is safe to close the breaker. The relay is fitted with a selectable Dead Bus detection function. If there is a requirement for a continuous supply or emergency power, then the generator can be connected without synchronising, thus ensuring continuity of supply. The absence of the bus voltage will cause the relay to energise.

Characteristics

SYNCHRO-CHECK (PARALLELING)

Technical parameters	PLL/D-100/120	PLL/D-173/240	PLL/D-380/480	PLL/D-277/500
Phase angle and voltage dead bus option (energise on trip):	-	-	-	-
System type:	1-phase (1~), 3-phase 4-wire (3~)			
Input terminals (generator):	A1, A2			
Input terminals (busbar):	A3, A4			
Rated voltage Un (V nom) L-N:	57.7, 63.5, 69.3	$\begin{aligned} & \text { 100, 110, 115, } \\ & 120,127,139 \\ & \hline \end{aligned}$	$\begin{aligned} & 220,230,240, \\ & 254,265,277 \\ & \hline \end{aligned}$	$\begin{aligned} & 277,300,380,400, \\ & 415,440,480,500 \\ & \hline \end{aligned}$
Operating frequency:	$45-65 \mathrm{~Hz}$			
Supply input burden (max):	2VA/1.6W approx	2.7VA/1.7W approx	4VA/2.2W approx	$5 \mathrm{VA} / 2.8 \mathrm{~W}$ approx
Dead bus on Udbon:	25\% Uon			
Dead bus off Udboff:	50\% Uon			
Sync tolerance adjustable:	10-30\% volts			
Overload capacity -continuous: -max. 10s:	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 174 \mathrm{~V} \\ & 209 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 600 \mathrm{~V} \\ & 700 \mathrm{~V} \end{aligned}$
Opening level (Uopen):	35V	60 V	132 V	166 V
Output relay-contact:	2 x change over (AgNi) plated			
Output relay-contact terminals:	15, 16, 18 \& 25, 26, 28			
Load capacity AC:	250V/8A, max. 2 kVA			
Load capacity DC:	30V/8A			
Mechanical life:	3×10^{6} by rated load			
Relay reset:	Automatic			
ANSI no.:	25			
Operating temperature:	$-20+55^{\circ} \mathrm{C}$			
Storage temperature:	$-30+70^{\circ} \mathrm{C}$			
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$.			
Overvoltage category:	III.			
Pollution degree:	2			
Enclosure integrity:	IP40 from the front panel/IP20 terminals			
Enclosure style:	DIN-rail, 6 module			
Case material:	Flame retardant polycarbonate			
Connecting conductors profile (mm^{2}):	max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$			
Dimensions:	H90xW105xD64mm			
Weight:	291g approx	335g approx	332g approx	335g approx
Standards:	EN 60255-6, EN 60255-27, EN61000-6-2, EN6100-6-4			

Protector Overview
PLL/D

Connection
PLL/D

REVERSE POWER (CURRENT)

The Reverse Power protector trip relay monitors a single- or three-phase supply for reverse power and trips a relay if it detects reverse power ($\mathrm{x} \cos \Phi$) over a set limit. The relay output is typically used to prevent 'motoring' of a generator (where the generator turns the engine), which can damage the engine.

Basic Parameters

- Available with three voltage ranges 100-120V, 173-240V and 380-480V (Un)
- Adjustable nominal current range, 2, 3, 4, 5, 8 \& 10 Amps (In)
- Adjustable trip delay 0.5-20s
- Adjustable set point 2-20\%
- Power on LED (green)

Part number	3-phase 3-wire	3-phase 4-wire	Protection
PAT	x		Reverse power 2-20\%
PAS		x	Reverse power 2-20\%

Operation

The Reverse Power trip relay provides continuous surveillance of AC generators against motoring. Reverse power relays are used to detect the failure of the prime mover (engine) when active energy (Watts) flows into the generator causing rotation - the set will operate like an electric motor which can cause significant mechanical damage. This relay offers an adjustable reverse power set between 2\% and 20\% of the nominal power and time delay adjustment range of 0 to 20 seconds. The protector relay estimates the power level in the system by measuring current and power factor, but does not actually measure the system voltage. When the reverse power level exceeds the set point, and after the time delay has elapsed, the relay will energise and the red LED will illuminate to indicate the trip condition. The relay will automatically reset once the power level falls below the set point minus the fixed differential of 1% causing the LED to extinguish and the relay to de-energise.

Note: The \% set potentiometer trimmer on the front label is calibrated as a percentage of the current rating e.g. of 5A and not of the forward kW.

Characteristics

REVERSE POWER (CURRENT)

Technical parameters	PAT-100/120	PAT-173/240	PAT-380/480	PAS-100/120	PAS-173/240	PAS-380/480
Reverse power (energise on trip):	-	-	-	-	-	-
System type:	3-phase 3-wire (3~)	3-phase 3-wire (3~)	3-phase 3-wire (3~)	1-phase, 3-phase 4-wire (3-)	1-phase, 3-phase 4-wire (3~)	1-phase, 3-phase 4-wire (3~)
Voltage input terminals:	L1, L2, L3			L1, N		
Current input terminals:	11, I2					
Rated voltage Un (V nom) :	100-120	173-240	380-480	57.7-69.3	100-139	220-277
Rated current In (A):	2A, 3A, 4A, 5A, 8A, 10A					
Operating frequency:	$45-65 \mathrm{~Hz}$					
Supply input burden (max):	2.5VA/ 1.5 W approx	4.2VA/ 3.2W approx	6VA/4W approx	1.4VA/ 1W approx	1.6VA/ 1.3W approx	2.9VA/ 2.1W approx
Monitored current range:	2.100\% In					
Monitored cos Φ range:	0.2 inductive to 0.2 capacitive					
Reverse power setpoint range:	$2.20 \%(\cos \Phi=1)$					
Differential (hysteresis):	Fixed at 1\%					
Trip reset:	Adjustable 0.5-20s					
Overload capacity -continuous: -max. 10s:	$\begin{aligned} & 3 \times 150 V \\ & 3 \times 180 V \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \times 300 V \\ & 3 \times 360 V \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \times 600 V \\ & 3 \times 720 V \\ & \hline \end{aligned}$	$\begin{gathered} 87 \mathrm{~V} \\ 104 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & 174 \mathrm{~V} \\ & 209 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 346 \mathrm{~V} \\ & 416 \mathrm{~V} \end{aligned}$
Opening level (Uopen):	$3 \times 60 \mathrm{~V}$	$3 \times 104 \mathrm{~V}$	$3 \times 228 \mathrm{~V}$	35 V	60V	132 V
Output relay-contact:	2 x change over (AgNi) plated					
Output relay-contact terminals:	15, 16, 18 \& 25, 26, 28					
Load capacity AC:	250V/8A, max. 2 kVA					
Load capacity DC:	30V/8A					
Mechanical life:	3×10^{6} by rated load					
Relay reset:	Automatic					
ANSI no.:	32					
Operating temperature:	$-20+55^{\circ} \mathrm{C}$					
Storage temperature:	$-30+70^{\circ} \mathrm{C}$					
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$.					
Overvoltage category:	III.					
Pollution degree:	2					
Enclosure integrity:	IP40 from the front panel/IP20 terminals					
Enclosure style:	DIN-rail, 6 module					
Case material:	Flame retardant polycarbonate					
Connecting conductors profile (mm^{2}):	max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$					
Dimensions:	H90xW105xD64mm					
Weight:	298g approx	340g approx	338g approx	248 g approx	269g approx	268g approx
Standards:	EN 60255-6, EN 60255-27, EN61000-6-2, EN6100-6-4					

Protector Overview
PAT \& PAS

Connection

PAT

PAS

DC VOLTS, MILLIVOLTS AND TRANSDUCER

The DC volts, millivolts and transducer trip relay protectors provide continuous surveillance of DC voltages or current signals. When the input signals move outside the set point limits the relay will operate and the fault LED will illuminate.

Basic Parameters

- Adjustable rated DC current input 0-1mA, 0-10mA, 4-20mA (PBV)
- Adjustable rated DC millivolts input $50 \mathrm{mV}, 75 \mathrm{mV}, 100 \mathrm{mV}$ (PBT/S)
- Adjustable rated DC voltage 10V, 20V, 40V, 80V, 120V (PDU/E)
- Trip level adjustment Low 0-80\% (Un)
- Trip level adjustment High 80-120\% (Un)
- Adjustable trip delay 0.5-10s
- Power on LED (green)

Part number	Type	Protection
PBV	DC transducer	High 40-120\% and low 0-80\% trip
PBT/S	DC millivolts	High 40-120\% and low 0-80\% trip
PDU/E	DC voltage	High 40-120\% and low 0-80\% trip

Operation

The DC volts, millivolts and transducer trip relay offers adjustable low and high trip points (set points) and time delay settings. If the monitored signal exceeds either the Low or High set point, the time delay is started and the red LED will illuminate to indicate a trip condition. When the time delay has elapsed, the relay will energise. The relay will automatically reset once the monitor signal falls below the set point minus the differential set point. When reset the red LED will extinguish and the relay will de-energise.

Characteristics

PBV

PDU/E

PBT/S

DC VOLTS, MILLIVOLTS AND TRANSDUCER

Technical parameters	PBT/S-12/24	PBT/S-24/240	PBV-12/24	PBV-24/240	PDU/E 24/240
DC millivolts trip:	-	-			
DC transducer trip:			-	-	
DC voltage:					-
Supply terminals:	A1, A2				
Input/monitoring terminal:	IN+, IN-				
Supply voltage:	12-24V DC	24-240V AC/DC (AC $45-65 \mathrm{~Hz}$)	12-24V DC	24-240V AC/DC (AC 45-65Hz)	
Supply voltage burden (max):	1W	3VA/0.9W	1W	3VA/0.9W	
Supply voltage tolerance:	+/-10\%				
Rated input:	50 mV , 75 mV , 100 mV		0-1mA, 0-10mA, 4-20mA		10, 20, 40, 80, 120 V
Input impedance:	$50 \mathrm{k} \Omega$		-		$1 \mathrm{M} \Omega$
Voltage drop across input:	-		1V max. at 120\% lin		-
Over-range:	40-120\% Uin		40-120\% lin		40-120\% Uin
Under-range:	0-80\% Uin		0-80\% lin		0-80\% Uin
Differential:	Fixed at 1\% Uin		Fixed at 1\% lin		Fixed at 1\% Uin
Trip time delay:	Adjustable 0.5 to 10s				Adjustable 0.5 to 60s
$\begin{aligned} & \text { Overload capacity - continuous: } \\ & \text { - 1s max.: } \end{aligned}$	$10 \times \operatorname{Uin}$		$\begin{gathered} 3 \times \operatorname{lin} \\ 10 \times \operatorname{lin} \end{gathered}$		$1.2 \times \text { Uin }$
Output relay-contact:	2 x change over (AgNi) plated				
Output relay-contact terminals:	15, 16, 18 \& 25, 26, 28				
Load capacity AC:	250V/8A, max. 2 kVA				
Load capacity DC:	30V 8A				
Mechanical life:	3×10^{6} by rated load				
Electrical life (AC1):	7×10^{6}				
ANSI no.:	74				
Operating temperature:	$-20+55^{\circ} \mathrm{C}$				
Storage temperature:	$-30+70^{\circ} \mathrm{C}$				
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$.				
Overvoltage category:	III.				
Pollution degree:	2				
Enclosure integrity:	IP40 from the front panel/IP20 terminals				
Enclosure style:	DIN-rail, 3 module				
Case material:	Flame retardant polycarbonate				
Connecting conductors profile (mm^{2}):	max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$				
Dimensions:	H90xW52xD64mm				
Weight:	135g approx				
Standards:	EN 60255-6, EN 60255-27, EN61000-6-2, EN6100-6-4				

Protector Overview

PBV

PDU/E

Connection
PBV, PBT/S, PDU/E

The Thermistor protector trip relay monitors the temperature of a motor using the PTC sensor (positive temperature coefficient resistor) or thermostat (TK) switch built in to the motor winding. Relay contacts can be used to disconnect the supply to the motor should it overheat. LEDs indicate mains on and fault status.

Basic Parameters

- Selectable PTC or TK modes
- Reset function
- Selectable memory function for latching
- Power on LED (green)

Part number	Type	Protection
PMM $/ T$	PTC, TK thermistors	Over-temperature

Operation

The Thermistor protector trip relay operates by de-energising a relay and illuminating a red LED when the thermistor detects a critical temperature condition. Should the motor overheat and the PTC resistance go above the 3.3 kOhms , the relays de-energise. The contacts remain de-energised until the PTC resistance falls to 1.8 kOhms . The selectable memory switch allows the option of latching the relay and the red LED stays illuminated until the reset button is pressed or triggered via the external reset switch. Any number of thermistors may be used in series connection providing the resistance at normal working temperature is less than 1500 ohms.

Characteristics

THERMISTOR

Technical parameters	PMM/T-24/240
PTC, TK thermistor:	-
System type:	Monitoring temperature of motor winding
Supply terminals:	A1, A2
Input/thermistor terminals:	Ta, Tb
Supply voltage:	AC/DC 24-240V (AC 45-65Hz)
Supply voltage burden (max):	2VA max
Supply voltage tolerance:	-15/10\%
PTC sensor ranges: Cold: Lower limit: Upper limit:	$\begin{gathered} 50 \Omega-1.5 \mathrm{k} \Omega \\ 1.8 \mathrm{k} \Omega \\ 3.3 \mathrm{k} \Omega \end{gathered}$
Sensor failure indication:	Red LED flashes
Repetition accuracy (mech):	<5\%
Switching error:	$\pm 5 \%$
Temperature dependence:	<0.1\%/ ${ }^{\circ} \mathrm{C}$
Output relay-contact:	2 x change over (AgNi) plated
Output relay-contact terminals:	15, 16, 18 \& 25, 26, 28
Load capability of relay contact AC:	250V/8A, max. 2 kVA
Load capability of relay contact DC:	24 V 8 A 500 mW min
Mechanical life:	3×10^{6} by rated load
Electrical life (AC1):	7×10^{6}
ANSI no.:	49
Operating temperature:	$-20+55^{\circ} \mathrm{C}$
Storage temperature:	$-30+70^{\circ} \mathrm{C}$
Electric strength (supplying -contact relay):	$4 \mathrm{kV} / 1 \mathrm{~min}$.
Overvoltage category:	III.
Pollution degree:	2
Enclosure integrity:	IP40 from the front panel/IP20 terminals
Enclosure style:	DIN-rail, 1 module
Case material:	Flame retardant polycarbonate
Connecting conductors profile (mm^{2}):	max. $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$
Dimensions:	H90xW17.6xD64mm
Weight:	83g approx
Standards:	EN 60255-6, EN 60255-27, EN61000-6-2, EN6100-6-4

Protector Overview

Connection
PMM/T

The Speed Sensing protector trip relay monitors rotating equipment using a magnetic pick-up and provides three output contacts which can be used to initiate alarms or shutdown signals. The relay also provides a tachometer output for speed indication.

Basic Parameters

- Magnetic pick up input
- 1mA output signal
- 3 adjustable rotation set points
- Power on LED (green)

Part number	Type	Protection
PH3	Speed sensing	Crank 10 to 50% Under-speed 50 to 100\% Over-speed 100 to 130\%

Operation

The Speed Sensing relay will detect under-speed, over-speed and stop conditions, the set points can be used to raise an alarm or shut down the monitored equipment. The front panel provides three user set trip levels with relay LED state indication and a speed indicator analogue output signal in the form of 0-1mA.

The relay can be calibrated such that the standard 100\% of the relay represents the required nominal engine speed. This is achieved by supplying the appropriate input to the sensor input terminals and pressing the adjust button for more than 3 seconds thus tripping the relay to become 100% reference.

Cranking Trip

The cranking function detects if the engine is running or stopped. This function can be used to ensure the cranking motor is disconnected once the engine has started running. The crank yellow LED illuminates and the relay energises when the engine speed exceeds the cranking setting. This is normally set just above the cranking speed of the crank motor to indicate the engine has started.

Under-Speed Trip

The under speed red LED illuminates and the relay de-energises when the engine speed falls below the under-speed control setting minus the fixed 2% differential.

Over-Speed Trip

Should the engine speed exceed the over-speed control setting, the over relay de-energises and the red over LED illuminates.

Fail Safe Operation

Should the sensor become disconnected (open circuit) the over red LED flashes, the over relay de-energises and the crank and under relays energise (crank and under LED's illuminate).

Characteristics

SPEED SENSING

Technical parameters	PH3-12/24
Magnetic pick-up:	-
System type:	Speed sensing
Supply terminals:	AUX (+/-)
Sensor terminals:	PULSE IN (+/-)
Supply voltage:	12-24V DC
Supply voltage burden (max):	2.5VA/1.4W
Supply voltage tolerance:	+20/-10\%
Input pulse amplitude:	5-75V p-p
Frequency range:	O-1kHz min, O-10kHz max
Trip settings: Cranking: Under-speed: Over-speed:	$\begin{gathered} 10-50 \% \\ 50-100 \% \\ 100-130 \% \\ \hline \end{gathered}$
Differential:	Fixed at 2\%
Analogue (meter) output: at 100\% rated speed: at 133\% rated speed:	$\begin{gathered} 0-1 \mathrm{~mA} \\ 0.75 \mathrm{~mA} \\ 1.0 \mathrm{~mA} \\ \hline \end{gathered}$
Output relay-contact; for general switching operation:	$3 \times$ change over (AgNi) plated, volt-free
Output relay-contact terminals:	11, 12, \& 14, 21, 22 \& 24, 31, 32 \& 34
Load capability of relay contact AC:	250V/8A, max. 2 kVA
Load capability of relay contact DC:	30V 8A
Mechanical life:	3×10^{6} by rated load
ANSI no.:	12/14
Operating temperature:	$-20+55^{\circ} \mathrm{C}$
Storage temperature:	$-30+70^{\circ} \mathrm{C}$
Electric strength (supplying -contact relay):	$4 \mathrm{kV} / 1 \mathrm{~min}$.
Overvoltage category:	III.
Pollution degree:	2
Enclosure integrity:	IP40 from the front panel/IP20 terminals
Enclosure style:	DIN-rail, 3 module
Case material:	Flame retardant polycarbonate
Connecting conductors profile (mm^{2}):	Max $2 \times 1.5 \mathrm{~mm}^{2} / 1 \times 2.5 \mathrm{~mm}^{2}$
Dimensions:	H90xW52xD64mm
Weight:	145 g approx
Standards:	EN 60255-6, EN 60255-27, EN61000-6-2, EN6100-6-4

Protector Overview
 PH3

Connection
PH3

MULTIFUNCTION TIMER RELAY

Connection diagrams DRT2-1P

DRT2-3P

Possibility to connect load onto controlling input It is possible to connect the load (e.g.: contactor) between terminals S-A2, without any interruption of correct relay function.

Multifunction timer relay can be used for electrical appliances, control of lights, heating, motors, pumps and fans.

- 10 functions: - 5 time functions controlled by supply voltage
- 4 time functions controlled by control input
- 1 function of latching relay
- Time scale $0.1 \mathrm{~s}-10$ days divided into 10 ranges: ($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}$ $-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{hrs} / 1 \mathrm{hrs}-10 \mathrm{hrs} / 0.1$ day -1 day/1 day -10 days/only ON/only OFF)
- Universal supply voltage AC/DC 12-240 V
- Output contact: DRT2-1P: 1x changeover 16A; DRT2-3P: $3 \times$ changeover 8A
- Multifunction red LED output indicator

Technical parameters	DRT2-1P	DRT2-3P
Number of functions:	10	
Supply terminals:	A1-A2	
Voltage range:	AC/DC $12-240 \mathrm{~V}$ ($\mathrm{AC} 50-60 \mathrm{~Hz}$)	
Burden:	AC 0.7-3 VA/DC 0.5-1.7 W	
Consumption (apparent/loss):	AC max. 12VA/1.3W	AC max. 12VA/1.9W
Supply voltage tolerance:	-15\%; +10\%	
Supply indication:	green LED	
Time ranges:	0.1 s - 10 days	
Time setting:	rotary switch and potentiometer	
Time deviation:	5\% - mechanical setting	
Repeat accuracy:	0.2% - set value stability	
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$	
Output		
Number of contacts:	1x changeover/SPDT (AgNi/Silver Alloy)	3x changeover/SPDT (AgNi/Silver Alloy)
Current rating:	16A/AC1	8A/AC1
Breaking capacity:	4000VA/AC1, 384W/DC	2000VA/AC1, 192W/DC
Inrush current:	30A/<3s	10A/<3s
Switching voltage:	250V AC1/24V DC	
Min. breaking capacity DC:	500 mA	
Output indication:	multifunction red LED	
Mechanical life:	3×10^{7}	
Electrical life (AC1):	0.7×10^{5}	
Controlling		
Power on control input:	AC 0.025-0.2VA (AC 12-240V)	
Load between S-A2:	Yes	
Control. terminals:	A1-S	
Impulse length:	min. 25ms/max. unlimited	
Reset time:	max. 150ms	
Other information		
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.1311^{\circ} \mathrm{F}\right)$	
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	
Electrical strength:	4 kV (supply-output)	
Mounting/DIN rail:	DIN rail EN 60715	
Protection degree:	IP 40 from front panel/IP 20 terminals	
Overvoltage category:	III.	
Pollution degree:	2	
Max. cable size (mm^{2}):	solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)	
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5\right.$ " $\left.\times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$	
Weight:	64 g approx.	89g approx.
Standards:	EN 61812-1, EN 61010-1	

MULTIFUNCTION TIMER RELAY

Functions

On Delay (Power On)

When the input voltage U is applied, timing delay t begins. Relay contacts R change state after time delay is complete. Contacts R return to their shelf state when input voltage U is removed. Trigger switch is not used in this function.

Repeat Cycle (Starting Off)
When input voltage U is applied, time delay t begins. When time delay t is complete, relay contacts R change state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

Off Delay (S Break)

Input voltage U must be applied continuously. When trigger switch S is closed, relay contacts R change state. When trigger switch S is opened, delay t begins. When delay t is complete, contacts R return to their shelf state. If trigger switch S is closed before time delay t is complete, then time is reset. When trigger switch S is opened, the delay begins again, and relay contacts R remain in their energized state. If input voltage U is removed, relay contacts R return to their shelf state.

Single Shot Trailing Edge (Non-Retriggerable)

Upon application of input voltage U, the relay is ready to accept trigger signal S . Upon application of the trigger signal S , the relay contacts R transfer and the preset time t begins. At the end of the preset time t , the relay contacts R return to their normal condition unless the trigger switch S is opened and closed prior to time out t (before preset time elapses). Continuous cycling of the trigger switch S at a rate faster than the preset time will cause the relay contacts R to remain closed. If input voltage U is removed, relay contacts R return to their shelf state.

Latching Relay

Input voltage U must be applied continuously. Output changes state with every trigger switch S closure. If input voltage U is removed, relay contacts R return to their shelf state.

Off Delay

When input voltage U is applied, relay contacts R change state immediately and timing cycle begins. When time delay is complete, contacts return to shelf state. When input voltage U is removed, contacts will also return to their shelfstate. Trigger switch is not used in this function.

Repeat Cycle (Starting On)

When input voltage U is applied, relay contacts R change state immediately and time delay t begins. When time delay t is complete, contacts return to their shelf state for time delay t. This cycle will repeat until input voltage U is removed.
Trigger switch is not used in this function.

Single Shot

Upon application of input voltage U, the relay is ready to accept trigger signal S . Upon application of the trigger signal S, the relay contacts R transfer and the preset time t begins. During time-out, the trigger signal S is ignored. The relay resets by applying the trigger switch S when the relay is not energized.

On/Off Delay

Input voltage U must be applied continuously. When trigger switch S is closed, time delay t begins. When time delay t is complete, relay contacts R change state and remain transferred until trigger switch S is opened. If input voltage U is removed, relay contacts R return to their shelf state.

Pulse Generator

Upon application of input voltage U, a single output pulse of 0.5 seconds is delivered to relay after time delay t. Power must be removed and reapplied to repeat pulse. Trigger switch is not used in this function.

MULTIFUNCTION TIMER RELAY

Time Ranges

0.1-1 h

1-10 hrs

0.1-1 day

1-10s

1-10 days

Protector Overview

Notes

1) Output contacts of DRT2-3P do not allow switching of different phases or 3 -phase voltages (voltage > 250V)

Time Ranges

0.1 - 1s

1-10s

0.1-1 min

1-10 min

0.1-1h

1-10 hrs

0.1-1 day

only ON

1-10 days

Two stage timer relay for gradual switching of high power.

- Function: $2 x$ timer delay
- Time scale 0.1s - 10 days divided into 10 time ranges:
$0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{~h}-1 \mathrm{~h} / 1 \mathrm{~h}-10 \mathrm{hrs} / 0.1$ day -1 day 1 day - 10 days/ON/OFF
- Times t 1 and t 2 are independantly adjustable
- Rough/fine time setting via rotary switch
- Universal supply voltage: AC/DC 12-240V
- Output contact: $2 \times$ changeover /DPDT 16A

Technical parameters	DRT3-1P
Number of functions:	2 x delay
Supply terminals:	A1-A2
Voltage range:	AC/DC $12-240 \mathrm{~V}$ (AC $50-60 \mathrm{~Hz}$)
Burden:	AC 0.7-3VA/DC 0.5-1.7W
Power input (apparent/loss):	AC max. $12 \mathrm{VA} / 1.3 \mathrm{~W}$
Supply voltage tolerance:	-15\%; +10\%
Supply indication:	green LED
Time ranges:	0.1s - 10 days
Time deviation:	5\% - mechanical setting
Repeat accuracy:	0.2\% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}\right.$, at $\left.=68{ }^{\circ} \mathrm{F}\right)$
Output	
Number of contacts:	$2 \mathrm{changeover/DPDT} \mathrm{(AgNi/Silver} \mathrm{Alloy)}$
Current rating:	16A/AC1
Breaking capacity:	4000VA/AC1, 384W/DC
Inrush current:	30A/<3 s
Switching voltage:	250 V AC1/24V DC
Min. breaking capacity DC:	500 mW
Output indication:	multifunction red LED
Mechanical life:	3×10^{7}
Electrical life (AC1):	0.7×10^{5}
Reset time:	max. 150 ms
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV (supply-output)
Mounting/DIN rail:	DIN rail EN 60715
Protection degree:	IP 40 from front panel/IP 20 terminals
Overvoltage category:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max.1x2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ (3.5 " $\times 0.7^{\prime \prime} \times 2.5$) $\left(3.5^{\prime \prime} \times 0.7{ }^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
Weight:	88 g approx
Standards:	EN 61812-1, EN 61010-1

Protector Overview

Connection
diagram

ELR EARTH LEAKAGE PROTECTOR RELAY

Connections

The grounding device must lead outside the current transformer.

Residual current devices are used to detect dangerous ground fault currents before damage is caused to expensive power assets. The ELRP/S monitors the earth leakage current and compares it with the user selectable trip level. Should this level be exceeded, the relay will trip and with a response time of under 40 ms , the supply can be disconnected before serious damage can occur.

Basic Parameters

- Continuous monitoring of the current value using an external current transformer
- Response time (<40ms)
- Adjustable trip current settings
- Adjustable time delay set point
- Selectable pre-alarm relay functions - ELRP or ELRS
- For each function the relay state in case of failure may be set - ON or OFF
- RESET \& TEST button for the return to the initial state or device test
- Analogue output 0...1mA for the control meter

ELRP (Pre-alarm) function

- 2 levels of monitored current - MAIN ALARM (set current value) and PRE-ALARM (60\% of set current value)
- Each current level has a dedicated LED indicator
- When the current value PRE-ALARM is exceeded the relay 1 (contact 15-18) responds - without delay
- When the MAIN ALARM current value is exceeded relay 2 (contact 25-28) responds - with preset delay

ELRS (Main alarm) function

- Both relays respond at the same time only when the MAIN ALARM current value is exceeded
- In other cases, the device behaves as in the case of ELRP function

Part number	Type	Protection
ELRP/S	Earth Leakage	Over current (adjustable set point)

Operation

After the connection of the supply voltage to the supply terminals (A1-A2) the green LED goes on. The device is monitoring the value of the leakage current (at terminals 11,12) by means of external current transformer. If the current value exceeds 60% of the set value the red LED TRIP 60\% goes on and relay 1 responds. If the current value exceeds the set value (100\%) the red LED TRIP 100\% goes on after the delay timing elapses and relay 2 responds. The red LED is flashing during the timing. If the current range is set to 30 mA , relay 2 responds without delay. The relay also responds if the set current value is exceeded 5 times. If the current value drops below the set value, relay 2 remains unchanged. If the current value drops below 60% of the set value and the difference is overridden the state of relay 1 changes. Relay 2 returns into the idle state by briefly pressing the RESET \&TEST button. It can also be reset by disconnecting the supply voltage.

(ELRS) function description

Both relays respond at the same time only when the set current value (100\%) is exceeded. In other cases, the device behaves as in the case of the ELRP function.

By pressing and holding (for longer than 1s) the button the device test is activated both the relays respond in the same way as in the case of exceeding the set current value. After releasing the button the relay returns to the initial state.

ELR EARTH LEAKAGE PROTECTOR RELAY

Core Balanced current transformer

Function principle: all phase conductors (also the neutral conductor, if connected) lead through the Core Balanced core of the current transformer. In the ideal case, the currents flowing through the conductors into the load and back become neutral due to their mutual effect and there is no signal on the secondary coil of the current transformer. If other undesirable current leakage is detected (e.g.: in case of insulation defect) the balance is disrupted and the current transformer evaluates the current difference.)

Technical parameters	ELRP/S-12/24	ELRP/S-24/240
Supply voltage:	12-24V DC	24V/240V AC/DC
Burden on supply:	1W	3VA/0.9W
AC supply frequency:	$45-65 \mathrm{~Hz}$	
Supply voltage tolerance:	$\pm 10 \%$	
Adjustable current levels (Imax):	0.03A, 0.1A, 0.2A, 0.3A, 0.5A, 1A, 2A, 3A, 5A, 10A	
Overload capacity:	$20 x$ set value (Imax) 1s max	
Pre-Alarm (lpa) Current level:	60\% (Imax)	
Pre-Alarm difference:	10\% (Imax)	
Adjustable delay t(s):	Os, 0.1s, $0.2 \mathrm{~s}, 0.4 \mathrm{~s}, 0.6 \mathrm{~s}, 0.8 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}^{*}$	
Analogue Output:	$0-1 m A=100 \%$ set value (Imax)	
Response time:	<40ms	
Relay contacts: for general switching operations:	$2 \times$ changeover, volt-free	
Load capacity - a.c.:	250V@ 8A, 2 kVA	
Load capacity - d.c.:	30V 8A	
Insulation:	$4 \mathrm{kV} / 1 \mathrm{~min}$	
Mechanical endurance:	30×10^{6} operations	
Other Data:		
Dimensions:	$90 \times 52 \times 64 \mathrm{~mm}$	
Weight:	135 g approx.	
Maximum conductor size:	$2 \times 1.5 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$	
Operating temperature:	-20 to $+55^{\circ} \mathrm{C}$	
Storage temperature:	-30 to $+70^{\circ} \mathrm{C}$	
Over-voltage category:	III	
Pollution degree:	2	
Environmental protection:	IP40 for front panel IP20 for terminals	
Standards:	EN 60255-6, EN 60255-27, EN 61000-6-2, EN 61000-6-4	

Characteristics

Protector Overview

CORE BALANCED CURRENT TRANSFORMERS

Features

- Leakage measurement range 0-10 amps
- 6 models available
- Integral wire sealable terminal cover
- Flame retardant high impact moulded case

Benefits

- Reduction of high currents for ease of metering
- Wide operating temperature $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
- Steel mounting feet supplied
- Long product life

Applications

- Switchgear
- Distribution systems
- Generator sets
- Control panels
- Motor protection
- Transformer protection
- Overload protection

Applications

- Switchgear

Approvals

- Switchgear

The CBT-94F series of core balanced current transformers are exclusively for use with our ELRP/S earth leakage protection relay. The extremely sensitive toroidal core and secondary winding are encapsulated by a self extinguishing case providing excellent mechanical strength, protection from damage and electrical insulation

Description

Residual current devices are used to detect potentially dangerous earth fault currents before damage is caused. An undetected fault current may lead to cables overheating, which could start a fire. If high fault currents are involved, hazardous voltages may also appear on earthed equipment, putting lives at risk. An earth leakage protection relay is intended to provide a high degree of protection and monitoring for any electrical equipment, specifically motors and their control gear, generator sets and transformers. The leakage current is determined by passing the phase conductors (and neutral if present) through a core balanced current transformer.

Operation

Primary conductors should be grouped together and fed through the current transformer aperture. It is essential that each conductor passes through the device in the same direction. Each phase conductor (and neutral if present) must pass through the current transformer. The current transformers sum the currents flowing into and back from the load. Ideally, the load will have no leakage current, so current flow through the CT will completely cancel out. For example, 100 Amps flowing into load and 97 Amps flowing back provides an output of 3 Amps .
The equipment grounding conductor must always bypass the current transformer. The connections between the current transformer and protector should be kept as short as possible to minimise signal noise. For best results, use screened cable, with the screen grounded at the protector.

Specifications

System voltage:	72OV maximum
Test voltage:	3 kV AC for 1 minute
System frequency:	50 Hz or 60 Hz
Primary ratings:	From 30mA to 10 A
Secondary terminals:	Protected to IP2O
Operating temperature:	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Enclosure:	UL94VO flame retardant plastic
Compliant with:	IEC 60044-1, VDE 0414
Mounting hardware:	Steel mounting feet for wall or base mounting

Dimensions

$\operatorname{Dim} \mathbf{A}$	$\operatorname{Dim} \mathbf{B}$	$\operatorname{Dim} \mathbf{C}$	$\operatorname{Dim} \mathbf{D}$	$\operatorname{Dim} \mathbf{E}$	$\operatorname{Dim} \mathbf{F}$	Dim G	Dim J	Cat no.
35	64	32	64	74	40	31	4	CBT-94F-035
70	64	52	105	117	40	31	4	CBT-94F-070
120	94	80	155	170	40	31	4	CBT-94F-105
160	150	120	241	254	93^{*}	80^{*}	11^{*}	CBT-94F-140
210	152	146	290	304	93^{*}	80^{*}	11^{*}	CBT-94F-210

* Dimension with metal feet fitted to CTB160 and CTB210

Features

- Precision digital settings
- LED bar graph display
- 10 selectable trip levels 100 to 1200 amps
- 16 selectable time delay Oms to 10 seconds
- Less than 40 ms response time 0-1mA analogue output
- User selectable input range of 0.2 m ohms or 2 m ohms
- User selectable latching/ self-resetting
- Single-pole change over relay
- 8 amp 250 V rated relay contacts

Benefits

- DIN-rail 43880 enclosure
- Switched mode supply accepts a wide range of auxiliary voltages
- Isolation of faulty circuits
- Insulation monitoring
- Advanced warning of faults
- Protection of expensive power assets
- Current transformer not required

Applications

- Switchgear
- Distribution systems
- Generator sets
- Control panels
- Utility power monitoring
- Transformer protection

The 373 -GFR is designed to detect dangerous ground fault currents before damage is caused to expensive power assets. The 373-GFR continuously monitors the fault current and compares it with the user selectable trip level. When this level is exceeded, the relay will trip. With a very fast response time of under 40ms, the supply can be disconnected before serious damage can occur. This product is intended to provide a high degree of ground fault protection and monitoring for any type of electrical equipment, specifically switchboards, generator sets and transformers.

Operation

The 373-GFR offers a single-pole change over relay contact incorporating a single set point, which will de-energise on trip. The relay senses the ground current by measuring the voltage developed across the N-G link impedance under a fault condition. We offer link selection of two standard N -G impedances, 0.2 m ohms or 2 m ohms. This is a very cost effective method, since a current transformer is not required. The 373-GFR features two incremental rotary selector switches on the front panel and a series of LED annunciators. The trip current switch offers selectable settings from 100 to 1200 amps and the time delay set point switch offers additional delay for fault discrimination, selectable from 0 to 10 seconds.

Once the trip current and time delay selections have been made, a green LED provides indication of mains healthy supply. The red LED will automatically illuminate if the pre-set fault level has been exceeded, (after any selected time delay). The unit also incorporates five yellow LEDs to indicate the level of leakage in 20\% increments. With all five LEDs lit, the leakage level has reached 100% of the setting.

The unit features a combined reset and test button. A short press of the button will reset the unit after a trip and one long press initiates an electronic confidence check. The relay latches on to a fault until the test/reset button is pressed or the auxiliary power is removed. However, automatic reset can be achieved by fitting a wire between two terminals. The relay will de-energise on trip (fail safe) as standard.

Analogue Outputs

The 373 -GFR unit incorporates a $0 / 1 \mathrm{~mA}$ analogue output which equals 0% to 100% of the selected tripping level. It can be used to drive an external meter, thus providing measurements for test commissioning and indication of potential problems. The analogue output also enables fault level diagnosis to be communicated into building management or intelligent SCADA systems.

Product Codes - Single-pole change over relay

Frequency	Dim A	Part number
50 Hz	$12-48 \mathrm{~V} \mathrm{DC}$	$373-G F R W-S H C 5-A 1-S P$
50 Hz	$24-48 \mathrm{~V} \mathrm{AC/DC}$	$373-G F R W-S H C 5-A 2-S P$
50 Hz	$100-250 \mathrm{~V} \mathrm{AC/DC}$	$373-G F R W-S H C 5-A 3-S P$
60 Hz	$12-48 \mathrm{~V} \mathrm{DC}$	$373-G F R W-S H C 6-A 1-S P$
60 Hz	$24-48 \mathrm{~V} \mathrm{AC/DC}$	$373-G F R W-S H C 6-A 2-S P$
60 Hz	$100-250 \mathrm{~V}$ AC/DC	$373-G F R W-S H C 6-A 3-S P$

GROUND FAULT RELAY

Specifications

Measuring input:	AC voltage developed across N-G link
Measuring range:	$0.2 \mathrm{~m} \Omega$ or $2 \mathrm{~m} \Omega$ shunt impedance link selectable
Overload:	Maximum input voltage 600V
Frequency:	$50 / 60 \mathrm{~Hz}$
Auxiliary voltage:	12-48V DC, $24-48 \mathrm{~V}$ AC and DC or 100-250V AC and DC
Auxiliary burden:	Less than 1.5 watts
Trip current settings:	Selectable 100A, 150A, 200A, 250A, 300A, 450A, 600A, 750A, 800A, 1200A
Trip accuracy:	50% <trip point current <100\% in accordance with IEC 1543
Trip response time:	<40ms (at $5 \times$ rated trip current, ignoring the selected time delay)
Time delay set points:	Selectable $0 \mathrm{~ms}, 50 \mathrm{~ms}, 100 \mathrm{~ms}, 150 \mathrm{~ms}, 200 \mathrm{~ms}, 300 \mathrm{~ms}, 400 \mathrm{~ms}, 500 \mathrm{~ms}, 600 \mathrm{~ms}, 700 \mathrm{~ms}, 800 \mathrm{~ms}, 900 \mathrm{~ms}$. 1 second, 2 seconds, 5 seconds, 10 seconds.
Indication:	5 yellow LED bar graph for fault levels. Red LED indicated trip function Green LED indicated auxiliary power presence
Relay contacts:	1-pole change over (SPCO or NO+NC) contacts
Relay contact rating:	8 amps at 250 V AC. 8 amps at 30V DC resistive
Relay mechanical life:	>100,000 operations
Analogue output:	0 to 1mA $=0$ to 100\% of selected tripping level. Compliance 1V, accuracy 10\%
Enclosure style:	DIN 43880, rail width 70 mm
Material:	Flame retardant UL94VO
Terminals:	1 to $4 \mathrm{~mm}^{2}$ solid or stranded conductors. IP2O protection
Operating temperature:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature:	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Relative humidity:	<95\% non condensing
Weight:	<250g
Dimensions:	71 mm wide $\times 90.5 \mathrm{~mm}$ high $\times 73 \mathrm{~mm}$ deep $2.79^{\prime \prime}$ wide $\times 3.56$ " high $\times 2.87$ " deep

Dimensions

DIN 43880

Terminal No.

8	Neutral input
6	Ground input
2	Fused auxiliary supply (-)
1	Fused auxiliary supply (+)
4	Default operation is non-latching
5	Fit link to enable relay latch on trip
9/10	Analogue output 0/1mA
11	Default input range is for $2 \mathrm{~m} \Omega$ shunt
12	Link to select $200 \boxtimes \Omega$ shunt input
14	Relay (NO)
15	Relay (COM)
16	Relay (NC)

Part Numbers

Part number	Protection	System	Page
AC current with adjustable time delay			2-5
PAU-1	Under current	Single-phase, 1A AC, 50/60Hz, Aux 24/240V AC/DC	
PAU-5	Under current	Single-phase, 5A AC, 50/60Hz, Aux 24/240V AC/DC	
PAO-1	Over current	Single-phase, 1A AC, 50/60Hz, Aux 24/240V AC/DC	
PAO-5	Over current	Single-phase, 5A AC, 50/60Hz, Aux 24/240V AC/DC	
PAD-1	Under/over current (2 output relays)	Single-phase, 1A AC, 50/60Hz, Aux 24/240V AC/DC	
PAD-5	Under/over current (2 output relays)	Single-phase, 5A AC, 50/60Hz, Aux 24/240V AC/DC	
PAP/V-1	Under/over current (2 output relays)	3 -phase, 3 or 4-wire, 1A AC, 50/60Hz, Aux 24/240V AC/DC	
PAP/V-5	Under/over current (2 output relays)	3 -phase, 3 or 4 -wire, 5A AC, 50/60Hz, Aux 24/240V AC/DC	
AC voltage with adjustable differential and time delay			6-11
PVU/Z-100/120	Under voltage	Single-phase, 57.7/69.3V L-N AC, 50/60Hz	
PVU/Z-173/240	Under voltage	Single-phase, 100/139V L-N AC, 50/60Hz	
PVU/Z-380/480	Under voltage	Single-phase, 220/277V L-N AC, 50/60Hz	
PVO/H-100/120	Over voltage	Single-phase, 57.7/69.3V L-N AC, 50/60Hz	
PVO/H-173/240	Over voltage	Single-phase, 100/139V L-N AC, 50/60Hz	
PVO/H-380/480	Over voltage	Single-phase, 220/277V L-N AC, 50/60Hz	
PVB-100/120	Under/over voltage (2 output relays)	Single-phase, 57.7/69.3V L-N AC, 50/60Hz	
PVB-173/240	Under/over voltage (2 output relays)	Single-phase, 100/139V L-N AC, 50/60Hz	
PVB-380/480	Under/over voltage (2 output relays)	Single-phase, 220/277V L-N AC, 50/60Hz	
PVK/J-100/120	Under voltage	3-phase 3-wire, 100/120V L-L AC, 50/60Hz	
PVK/J-173/240	Under voltage	3-phase 3-wire, 173/240V L-L AC, 50/60Hz	
PVK/J-380/480	Under voltage (2 output relays)	3-phase 3-wire, 380/480V L-L AC, 50/60Hz	
PVA/C-100/120	Over voltage	3-phase 3-wire, 100/120V L-L AC, 50/60Hz	
PVA/C-173/240	Over voltage	3-phase 3-wire, 173/240V L-L AC, 50/60Hz	
PVA/C-380/480	Over voltage (2 output relays)	3-phase 3-wire, 380/480V L-L AC, 50/60Hz	
PVM-100/120	Under/over voltage (2 output relays)	3-phase 3-wire, 100/120V L-L AC, 50/60Hz	
PVM-173/240	Under/over voltage (2 output relays)	3-phase 3-wire, 173/240V L-L AC, 50/60Hz	
PVM-380/480	Under/over voltage (2 output relays)	3-phase 3-wire, 380/480V L-L AC, 50/60Hz	
PVV/X-100/120	Under voltage	3-phase 4-wire, 57.7/69.3V L-N (100/120V L-L) AC, 50/60Hz	
PVV/X-173/240	Under voltage	3-phase 4-wire, 100/139V L-N (173/240V L-L) AC, 50/60Hz	
PVV/X-380/480	Under voltage (2 output relays)	3-phase 4-wire, 220/277V L-N (380/480V L-L) AC, $50 / 60 \mathrm{~Hz}$	
PVP/S-100/120	Over voltage	3-phase 4-wire, 57.7/69.3V L-N (100/120V L-L) AC, 50/60Hz	
PVP/S-173/240	Over voltage	3-phase 4-wire, 100/139V L-N (173/240V L-L) AC, 50/60Hz	
PVP/S-380/480	Over voltage (2 output relays)	3-phase 4-wire, 220/277V L-N (380/480V L-L) AC, 50/60Hz	
PVE-100/120	Under/over voltage (2 output relays)	3-phase 4-wire, 57.7/69.3V L-N (100/120V L-L) AC, 50/60Hz	
PVE 173/240	Under/over voltage (2 output relays)	3-phase 4-wire, 100/139V L-N (173/240V L-L) AC, 50/60Hz	
PVE-380/480	Under/over voltage (2 output relays)	3-phase 4-wire, 220/277V L-N (380/480V L-L) AC, 50/60Hz	
Frequency with adjustable differential and time delay			12-13
PHD-100/120	Under/over frequency (2 relays)	Single-phase, 57.7/69.3V L-N AC (50, 60 and 400Hz)	
PHD-173/240	Under/over frequency (2 relays)	Single-phase, 100/139V L-N AC (50, 60 and 400 Hz)	
PHD-380/480	Under/over frequency (2 relays)	Single-phase, 220/277V L-N AC (50, 60 and 400Hz)	
PHD-280/860	Under/over frequency (2 relays)	Single-phase, 161/500V L-N AC (50, 60 and 400Hz)	
Phase sequence and phase failure			14-15
PVR3-100/120	Phase sequence under voltage	3-phase 3-wire, 100/120V L-L AC, 50/60Hz	
PVR3-173/240	Phase sequence under voltage	3-phase 3-wire, 173/240V L-L AC, 50/60Hz	
PVR3-380/480	Phase sequence under voltage (2 output relays)	3-phase 3-wire, 380/480V L-L AC, 50/60Hz	
PVR4-100/120	Phase sequence under voltage	3-phase 3-wire, 100/120V L-L AC, 50/60Hz	
PVR4-173/240	Phase sequence under voltage	3-phase 3-wire, 173/240V L-L AC, 50/60Hz	
PVR4-380/480	Phase sequence under voltage (2 output relays)	3-phase 3-wire, 380/480V L-L AC, 50/60Hz	
Phase balance and under voltage relay with adjustable time delay and unbalance			16-17
PSF/G3-100/120	Phase loss, unbalanced and under voltage	3-phase 3-wire, 100/120V L-L AC, 50/60Hz	
PSF/G3-173/240	Phase loss, unbalanced and under voltage	3-phase 3-wire, 173/240V L-L AC, 50/60Hz	
PSF/G3-380/480	Phase loss, unbalanced and under voltage	3-phase 3-wire, 380/480V L-L AC, 50/60Hz	
PSF/G4-100/120	Phase loss, unbalanced and under voltage	3-phase 4-wire, 57.7/69.3V L-N (100/120V L-L) AC, 50/60Hz	
PSF/G4-173/240	Phase loss, unbalanced and under voltage	3-phase 4-wire, 100/139V L-N (173/240V L-L) AC, 50/60Hz	
PSF/G4-380/480	Phase loss, unbalanced and under voltage	3-phase 4-wire, 220/277V L-N (380/480V L-L) AC, 50/60Hz	

Part Numbers continued

Part number	Protection	System	Page
Syncro-check with dead bus facility			18-19
PLL/D-100/120	Phase angle and voltage dead bus	Single or 3-phase, 4-wire, 57.7/69.3V, L-N, L-L AC, 50/60Hz	
PLL/D-173/240	Phase angle and voltage dead bus	Single or 3-phase, 4-wire, 100/139V, L-N, L-L AC, 50/60Hz	
PLL/D-380/480	Phase angle and voltage dead bus	Single or 3-phase, 4-wire, 220/277V, L-N, L-L AC, $50 / 60 \mathrm{~Hz}$	
PLL/D-277/500	Phase angle and voltage dead bus	Single or 3-phase, 4 wire, 277/500V, L-N, L-L AC, $50 / 60 \mathrm{~Hz}$	
Reverse power (current) with adjustable time delay			20-21
PAS-100/120	Reverse power	```Single or 3-phase, 4-wire, 57.7/69.3V L-N (100/120V L-L) AC, 0-6A AC,50/60Hz```	
PAS-173/240	Reverse power	Single or 3-phase, 4-wire, 100/139V L-N (173/240V L-L) AC, $0-6 A$ AC, $50 / 60 \mathrm{~Hz}$	
PAS-380/480	Reverse power	Single or 3-phase, 4-wire, 220/277V L-N (380/480V L-L) AC, $0-6 A$ AC, $50 / 60 \mathrm{~Hz}$	
PAT-100/120	Reverse power	3-phase, 3-wire, 100-120V AC, 0-6A AC, 50/60Hz	
PAT-173/240	Reverse power	3-phase, 3-wire, 173-240V AC, 0-6A AC, 50/60Hz	
PAT-380/480	Reverse power	3-phase, 3-wire, 380-480V AC, 0-6A AC, 50/60Hz	
DC volts, millivolts and transducer with adjustable time delay			22-23
PBT/S-24/240	High/low trip (2 output relays)	50, 75, 100 mV DC, 24/240V AC/DC Aux	
PBT/S-12/24	High/low trip (2 output relays)	50, 75, 100mV DC, 12/24V DC Aux	
PBV-24/240	High/low trip (2 output relays)	0/1, 0/10, 0/20, 4/20mA DC, 24/240V AC/DC Aux	
PBV-12/24	High/low trip (2 output relays)	0/1, 0/10, 0/20, 4/20mA DC, 12/24V DC Aux	
PDU/E 24/240	High/low trip (2 output relays)	10, 20, 40, 80, 120V DC, 24/240V AC/DC Aux	
Thermistor trip with over trip relay and manual/remote reset			24-25
PMM/T-24/240	Over temperature	Input PTC thermistors, 24/240V AC/DC Aux	
Speed sensing			26-27
PH3-12/24	3 Setpoints, 1 relay	Input. Magnetic pickup, 12/24V DC Aux	
Multifunction Timer Relay			28-30
DRT2-1P	Timer delay relay 10 functions, 10 time ranges $0,1 \mathrm{~s}-10$ days	1x output 16A changeover/SPDT, Auxiliary 12-240 AC/DC VOLTS	
DRT2-3P	Timer delay relay 10 functions, 10 time ranges $0,1 s-10$ days	3x output 8A changeover/SPDT, Auxiliary 12-240 AC/DC VOLTS	
Doublestage Timer Relay			31
DRT3-1P	Two-state Timer delay relay 2×10 time delay ranges, 0,1s-10 days	2x output 16A changeover/SPDT Auxiliary 12-240 AC/DC VOLTS	
ELR Earth Leakage Protector Relay			32-33
ELRP/S-12/24	Earth Leakage Over current	selectable trip setting, 12/48V DC Aux	
ELRP/S-24/240	Earth Leakage Over current	selectable trip setting, 24/240V AC/DC Aux	
Core Balanced Current Transformers			34-35
CBT-94F	Core Balanced	35, $70,105,140,210$ and 300 mm apertures available	
Ground Fault Relay			35-36
373-GFR	Ground fault relay protection	Selectable trip settings	

Notes

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

